



# Noise Contours around Brussels Airport for the Year 2016

By: Dr. Luc Dekoninck

Prof. Dr. Ir. Timothy Van Renterghem

Prof. Dr. Ir. Dick Botteldooren

Re: PA2017\_001\_BAC Date: 17-04-2017

Ghent University
Department of Information Technology (INTEC) – WAVES Research Group iGent – Technologiepark Zwijnaarde no. 15
9052 Ghent

# **Table of contents**

| 1 | Intro | oduct | ion                                                               | 8    |
|---|-------|-------|-------------------------------------------------------------------|------|
|   | 1.1   | Disc  | laimer                                                            | 8    |
|   | 1.2   | Com   | pulsory calculations                                              | 9    |
|   | 1.3   | Hist  | ory of noise contours                                             | 9    |
|   | 1.4   | INM   | : Integrated Noise Model                                          | . 10 |
|   | 1.5   | Pop   | ulation data                                                      | . 10 |
|   | 1.6   | Soui  | rce data                                                          | . 10 |
|   | 1.7   | INM   | Studiy results                                                    | . 10 |
| 2 | Defi  | nitio | าร                                                                | . 12 |
|   | 2.1   | Expl  | anation of a few frequently-used terms                            | . 12 |
|   | 2.1.3 | 1     | Noise contours                                                    | . 12 |
|   | 2.1.2 | 2     | Frequency contours                                                | . 12 |
|   | 2.1.3 | 3     | Noise zones                                                       | . 12 |
|   | 2.1.4 | 4     | The A-weighted equivalent sound pressure level L <sub>Aeq,T</sub> | . 12 |
|   | 2.1.5 | 5     | L <sub>den</sub>                                                  | . 13 |
|   | 2.2   | Link  | between annoyance and noise impact                                | . 14 |
| 3 | Met   | hodo  | logy                                                              | . 15 |
|   | 3.1   | Data  | a input                                                           | . 15 |
|   | 3.1.  | 1     | Information about aircraft movements                              | . 15 |
|   | 3.1.2 | 2     | Radar data                                                        | . 16 |
|   | 3.1.3 | 3     | Meteorological data                                               | . 16 |
|   | 3.1.4 | 4     | Take-off profile                                                  | . 17 |
|   | 3.2   | Exec  | cution of the contour calculations                                | . 17 |
|   | 3.2.  | 1     | Match between measurements (NMS) and calculations (INM)           | . 17 |
|   | 3.2.2 | 2     | Technical data                                                    | . 18 |
|   | 3.2.3 | 3     | Calculation of frequency contours                                 | . 18 |
| 4 | Resu  | ults  |                                                                   | . 19 |
|   | 4.1   | Back  | ground information about interpreting the results                 | . 19 |
|   | 4.1.  | 1     | Number of flight movements                                        | . 19 |
|   | 4.1.2 | 2     | Other important evolutions                                        | . 21 |
|   | 4.2   | Nois  | se measurements - L <sub>Aeq,24h</sub>                            | . 26 |
|   | 4.3   | Nois  | se contours                                                       | . 31 |
|   | 4.3.  | 1     | L <sub>day</sub> contours                                         | . 31 |

|   | 4.3.          | 2    | L <sub>evening</sub> contours                                                                                                                                       | 33 |
|---|---------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|   | 4.3.          | 3    | L <sub>night</sub> contours                                                                                                                                         | 34 |
|   | 4.3.          | 4    | L <sub>den</sub> contours                                                                                                                                           | 36 |
|   | 4.3.          | 5    | Freq.70,day contours (day 07:00 - 23:00)                                                                                                                            | 36 |
|   | 4.3.          | 6    | Freq.70,night contours (night 23:00-07:00)                                                                                                                          | 37 |
|   | 4.3.          | 7    | Freq.60,day contours (day 07:00-23:00)                                                                                                                              | 38 |
|   | 4.3.          | 8    | Freq.60,night - contours (night 23:00-07:00)                                                                                                                        | 39 |
|   | 4.4           | Nun  | nber of people who are potentially highly inconvenienced                                                                                                            | 40 |
| 5 | Арр           | endi | ces                                                                                                                                                                 | 42 |
|   | 5.1           | Run  | way and route usage                                                                                                                                                 | 42 |
|   | 5.2           | Loca | ation of the measuring stations                                                                                                                                     | 44 |
|   | 5.3           | Res  | ults of contour calculations – 2016                                                                                                                                 | 45 |
|   | 5.3.          | 1    | Surface area per contour zone and per municipality                                                                                                                  | 45 |
|   | 5.3.          | 2    | Number of residents per contour zone and per municipality                                                                                                           | 49 |
|   | 5.4           | Nois | se contour maps: evolution 2015-2016                                                                                                                                | 53 |
|   | 5.5           | Evo  | lution of the surface area and the number of residents                                                                                                              | 70 |
|   | 5.5.<br>Fred  |      | Evolution of the surface area per contour zone: L <sub>day</sub> , L <sub>evening</sub> , L <sub>night</sub> , Freq.70, night, Freq.60,day and Freq.60,day.         |    |
|   | 5.5.3<br>Fred |      | Evolution of the number of residents per contour zone: L <sub>day</sub> , L <sub>evening</sub> , L <sub>night</sub> , Freq.70, night, Freq.60,day and Freq.60,night |    |
|   | 5.6           | Doc  | umentation provided files                                                                                                                                           | 86 |

# List of figures

| rigure 1: Graph of the A-weighted equivalent sound pressure level (L <sub>Aeq,T</sub> ) for a period 1=10 minutes, togeth | ıer |
|---------------------------------------------------------------------------------------------------------------------------|-----|
| with the instantaneous (L <sub>Aeq,1sec</sub> ) from which this is derived.                                               | 13  |
| Figure 2: Percentage of people who are potentially severely inconvenienced due to Lden for aircraft noise.                | 14  |
| Figure 3: Evolution of flight traffic (all movements) at Brussels Airport.                                                | 19  |
| Figure 4: Evolution of flight traffic during the night (23:00-06:00) at Brussels Airport.                                 | 20  |
| Figure 5: radar tracks of the flights that landed on 07L during the renovation of runway 01/19.                           | 25  |
| Figure 6: Changes in departure routes for the left curve from runway 25R from 02/04/2015 (source: AIP).                   | 32  |
| Figure 7: L <sub>day</sub> noise contours around Brussels Airport in 2015 (dotted blue) and 2016 (solid red).             | 33  |
| Figure 8: L <sub>evening</sub> noise contours around Brussels Airport in 2015 (dotted blue) and 2016 (solid red).         | 34  |
| Figure 9: L <sub>night</sub> noise contours around Brussels Airport in 2015 (dotted blue) and 2016 (solid red).           | 35  |
| Figure 10: L <sub>den</sub> noise contours around Brussels Airport in 2015 (dotted blue) and 2016 (solid red).            | 36  |
| Figure 11: Freq.70,day frequency contours around Brussels Airport for 2015 and 2016.                                      | 37  |
| Figure 12: Freq.70, night frequency contours around Brussels Airport for 2015 and 2016.                                   | 38  |
| Figure 13: Freq.60,day frequency contours around Brussels Airport for 2015 and 2016.                                      | 39  |
| Figure 14: Freq.60, night frequency contours around Brussels Airport for 2015 and 2016.                                   | 40  |
| Figure 15: Evolution of the number of people who are potentially severely inconvenienced inside the $L_{\text{den}}$      | 55  |
| dB(A) noise contour.                                                                                                      | 41  |
| Figure 16: Location of the measuring stations.                                                                            | 44  |
| Figure 17: Evolution of the surface area inside the L <sub>day</sub> contours (2000, 2006-2016).                          | 70  |
| Figure 18: Evolution of the surface area inside the L <sub>evening</sub> contours (2000, 2006-2016).                      | 71  |
| Figure 19: Evolution of the surface area inside the L <sub>night</sub> contours (2000, 2006-2016).                        | 72  |
| Figure 20: Evolution of the surface area inside the L <sub>den</sub> contours (2000, 2006-2016).                          | 73  |
| Figure 21: Evolution of the surface area inside the Freq.70,day contours (2000, 2006-2016).                               | 74  |
| Figure 22: Evolution of the surface area inside the Freq.70, night contours (2000, 2006-2016).                            | 75  |
| Figure 23: Evolution of the surface area inside the Freq.60,day contours (2000, 2006-2016).                               | 76  |
| Figure 24: Evolution of the surface area inside the Freq.60, night contours (2000, 2006-2016).                            | 77  |
| Figure 25: Evolution of the number of residents inside the $L_{\text{day}}$ contours (2000, 2006-2016).                   | 78  |
| Figure 26: Evolution of the number of residents inside the L <sub>evening</sub> contours (2000, 2006-2016).               | 79  |
| Figure 27: Evolution of the number of residents inside the L <sub>night</sub> contours (2000, 2006-2016).                 | 80  |
| Figure 28: Evolution of the number of residents inside the $L_{den}$ contours (2000, 2006-2016).                          | 81  |
| Figure 29: Evolution of the number of residents inside the Freq.70,day contours (2000, 2006-2016).                        | 82  |
| Figure 30: Evolution of the number of residents inside the Freq.70, night contours (2000, 2006-2016).                     | 83  |
| Figure 31: Evolution of the number of residents inside the Freq.60,day contours (2000, 2006-2016).                        | 84  |
| Figure 32: Evolution of the number of residents inside the Freq.60, night contours (2000, 2006-2016).                     | 85  |

# List of tables

| Table 1: Number of movements (incl. helicopter movements) in 2016 and the change vs.2015 (VLAREM d                                                                            |         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| of the day).                                                                                                                                                                  |         |
| Table2: Evolution of the number of movements in 2016 compared to 2015 according to Vlarem 2 divisional day (day, evening, night) broken down per month                        |         |
| Table3: Evolution of the number of flight movements per aircraft type during the operational night (23:00-06:00) for the (MTOW > 136 tons) aircraft types                     | -       |
| Table4: Evolution of the number of flight movements per aircraft type during the operational night (23:00-06:00) for the most common light (MTOW < 136 tonnes) aircraft types | period  |
| Table5: Preferential runway usage since 19/09/2013 (local time) (source: AIP 10/12/2015 to 08/12/2016)                                                                        |         |
| Table 6: Match between calculations and measurements for noise indicator $L_{Aeq,24h}$ (in dB(A)). The grey r                                                                 |         |
| the table indicate comparisons between measurements and calculations which are difficult to perform text)                                                                     | m (see  |
| Table 7: Match between calculations and measurements for noise indicator $L_{night}$ (in dB(A)). The grey r                                                                   |         |
| the table indicate comparisons between measurements and calculations which are difficult to perform text).                                                                    | m (see  |
| Table 8: Match between calculations and measurements for noise indicator L <sub>den</sub> (in dB(A)). The grey rows                                                           |         |
| table indicate comparisons between measurements and calculations which are difficult to perform (see to                                                                       |         |
| Table9: Evolution of the number of people who are potentially severely inconvenienced inside the L <sub>den</sub> 55 noise contour.                                           |         |
| Table 10: Overview of the number of departures and arrivals annually per runway including changes v                                                                           |         |
| previous year (all flights, day, evening and night). The figures between brackets are the data for 2015                                                                       |         |
| Table 11: Overview of the number of departures and arrivals annually per runway including changes v                                                                           | vs. the |
| previous year: day. The figures between brackets are the data for 2015                                                                                                        | 42      |
| Table 12: Overview of the number of departures and arrivals annually per runway including changes v                                                                           | vs. the |
| previous year: evening. The figures between brackets are the data for 2015                                                                                                    | 43      |
| Table 13: Overview of the number of departures and arrivals annually per runway including changes                                                                             | vs. the |
| previous year: night. The figures between brackets are the data for 2015                                                                                                      | 43      |
| Table 14: Overview of the measuring points.                                                                                                                                   | 44      |
| Table 15: Surface area per L <sub>day</sub> contour zone and municipality – 2016                                                                                              |         |
| Table 16: Surface area per L <sub>evening</sub> contour zone and municipality – 2016                                                                                          |         |
| Table 17: Surface area per L <sub>night</sub> contour zone and municipality – 2016                                                                                            |         |
| Table 18: Surface area per L <sub>den</sub> contour zone and municipality – 2016                                                                                              |         |
| Table 19: Surface area per Freq.70,day contour zone and municipality – 2016                                                                                                   |         |
| Table 20: Surface area per Freq.70, night contour zone and municipality – 2016.                                                                                               |         |
| Table 21: Surface area per Freq.60,day contour zone and municipality – 2016                                                                                                   |         |
| Table 22: Surface area per Freq.60, night contour zone and municipality – 2016.                                                                                               |         |
| Table 23: Number of residents per L <sub>day</sub> contour zone and municipality – 2016.                                                                                      |         |
| Table 24: Number of residents per L <sub>evening</sub> contour zone and municipality – 2016.                                                                                  |         |
| Table 25: Number of residents per L <sub>night</sub> contour zone and municipality – 2016                                                                                     |         |
| Table 26: Number of residents per L <sub>den</sub> contour zone and municipality – 2016.                                                                                      |         |
| Table 27: Number of residents per Freq.70,day contour zone and municipality – 2016                                                                                            |         |
| Table 28: Number of residents per Freq.70, night contour zone and municipality – 2016.                                                                                        |         |
| Table 29: Number of residents per Freq.60,day contour zone and municipality – 2016                                                                                            |         |
| Table 30: Number of residents per Freq.60, night contour zone and municipality – 2016                                                                                         |         |
| Table 31: Evolution of the surface area inside the L <sub>day</sub> contours (2000, 2006-2016)                                                                                |         |
| Table 32: Evolution of the surface area inside the L <sub>evening</sub> contours (2000, 2006-2016)                                                                            |         |
| Table 33: Evolution of the surface area inside the L <sub>night</sub> contours (2000, 2006-2016)                                                                              |         |
| rable 34. Evolution of the surface area make the Eden Contours (2000, 2000-2010)                                                                                              | / 3     |

| Table 35: | Evolution of the surface area inside the Freq.70,day contours (2000, 2006-2016)                 | 74 |
|-----------|-------------------------------------------------------------------------------------------------|----|
| Table 36: | Evolution of the surface area inside the Freq.70, night contours (2000, 2006-2015)              | 75 |
| Table 37: | Evolution of the surface area inside the Freq.60,day contours (2000, 2006-2015)                 | 76 |
| Table 38: | Evolution of the surface area inside the Freq.60, night contours (2000, 2006-2016)              | 77 |
| Table 39: | Evolution of the number of residents inside the $L_{\text{day}}$ contours (2000, 2006-2016)     | 78 |
| Table 40: | Evolution of the number of residents inside the $L_{\text{evening}}$ contours (2000, 2006-2016) | 79 |
| Table 41: | Evolution of the number of residents inside the $L_{\text{night}}$ contours (2000, 2006-2016)   | 80 |
| Table 42: | Evolution of the number of residents inside the $L_{\text{den}}$ contours (2000, 2006-2016)     | 81 |
| Table 43: | Evolution of the number of residents inside the Freq.70,day contours (2000, 2006-2016)          | 82 |
| Table 44: | Evolution of the number of residents inside the Freq.70,night contours (2000, 2006-2016)        | 83 |
| Table 45: | Evolution of the number of residents inside the Freq.60,day contours (2000, 2006-2016)          | 84 |
| Table 46: | Evolution of the number of residents inside the Freq.60, night contours (2000, 2006-2016)       | 85 |

## 1 Introduction

The Government imposes an obligation on Brussels Airport Company to calculate noise contours are calculated every year in order to perform an assessment of the noise impact caused by departing and landing aircraft on the area surrounding the airport. The calculations are imposed on Brussels Airport pursuant to Flemish environmental legislation (VLAREM) which was amended in 2005<sup>1</sup> in accordance with the European guideline on the assessment and control of environmental noise, and the environmental permit<sup>2</sup> of Brussels Airport Company. These noise contours are calculation according to a strictly regulated methodology (see 1.2) to reflect the evolutions of the number of movements and fleet changes, and also the actual usage of runways for take-off and landing. Weather conditions and coincidental events also affect this actual usage. To check their accuracy of the calculations, the noise contours are compared with the sound measurements at a number of locations around the airport.

Between 1996 and 2014, these contours were calculated by the Acoustics and Thermal Physics Laboratory of the Belgian university KULeuven. Since 2015, this assignment has been assumed by the WAVES research group of the Ghent University (UGent). The calculations are commissioned by the airport operator which is currently Brussels Airport Company.

#### 1.1 Disclaimer

This assignment is performed by recognized sound experts working at the Ghent University with the explicit order to submit a report in compliance with the legal obligations imposed on Brussels Airport Company pertaining to the applicable legislation. The recognized sound experts at the Ghent University are responsibility for the conformity of this result but are not responsible for the quality and comprehensiveness of the raw data provided. The following limitations apply with regard to the use of this report:

- This report contains no information, judgment or opinion about the current Flemish environmental legislation and the legislation of the Brussels-Capital Region and is not suitable to be use for this purpose.
- This report may not be interpreted as an opinion or action plan to minimise exposure, sleep disruption or nuisance among the public.

<sup>1</sup> Belgian Official Gazette, Decision by the Flemish Government on the evaluation and control of environmental noise, amending the decision of the Flemish Government of 1 June 1995 on the general and sector-specific rules on environmental health, 31 August 2005.

<sup>&</sup>lt;sup>2</sup> AMV/0068637/1014B AMV/0095393/1002B; Decision by the Flemish minister of Public Works, Energy, Environment and Nature, containing the judgement relating to the appeals lodged against the Decision with reference D/PMVC/04A06/00637 of 8 July 2004 by the provincial executive of the provincial council of Flemish Brabant, on granting of the environmental license for a period expiring on 8 July 2024 to NV Brussels International Airport Company (B.I.A.C), Vooruitgangsstraat 80 bus 2, 1030 Brussels, to continue operating and to alter (by adding to it) an airport located at Brussels National Airport in 1930 Zaventem, 1820 Steenokkerzeel, 1830 Machelen and 3070 Kortenberg, 30 December 2004 .

# 1.2 Compulsory calculations

In accordance with the VLAREM environmental legislation, the operator of an airport classified in category<sup>3</sup> must have the following noise contours calculated annually:

- L<sub>den</sub>- noise contours of 55, 60, 65, 70 and 75 dB(A) to show noise impact over 24 hours and to determine the number of people who are potentially seriously inconvenienced;
- L<sub>day</sub> noise contours of 55, 60, 65, 70 and 75 dB(A) to show noise impact during the day from 07:00 to 19:00;
- L<sub>evening</sub> noise contours of 50, 55, 60, 65, 70 and 75 dB(A) to show noise impact during the evening from 19:00 to 23:00;
- L<sub>night</sub> noise contours of 45, 50, 55, 60, 65 and 70 dB(A) to show noise impact at night from 23:00 to 07:00;

In addition to the VLAREM obligations, the environmental permit of Brussels Airport Company imposes extra noise contour calculations for:

- L<sub>night</sub> and L<sub>den</sub> noise contours such as required by the present VLAREM obligation;
- Frequency contours for 70 dB(A) and 60 dB(A); as in preceding years, Brussels Airport Company requested UGent to calculate the following frequency contours:
  - Frequency contours for 70 dB(A) during the day period (07:00 to 23:00) with frequencies 5x, 10x, 20x, 50x and 100x
  - Frequency contours for 70 dB(A) at night (07:00 to 23:00) with frequencies 1x, 5x, 10x, 20x and 50x
  - Frequency contours for 60 dB(A) during the day period (07:00 to 23:00) with frequencies 50x, 100x, 150x, and 200x
  - Frequency contours for 60 dB(A) at night (23:00 to 07:00) with frequencies 10x, 15x, 20x, and 30x

The calculation of the noise contours must be carried out in accordance with the 'Integrated Noise Model' (INM) of the United States Federal Aviation Administration (FAA), version 6.0c or later.

The number of people who are potentially seriously inconvenienced within the various Lden contour zones must be determined on the basis of the dose response relationship laid down in VLAREM.

The noise zones must be shown on a 1/25 000 scale map.

# 1.3 History of noise contours

The annual calculation of noise contours started in 1996. Until VLAREM was amended to comply with the European guideline on environmental noise in 2005, the following division of the day was used (day: 06:00 - 23:00; night: 23:00 - 06:00). Since VLAREM was adjusted in accordance with the

<sup>&</sup>lt;sup>3</sup> Class 1 airports: airports that meet the requirements of the Chicago Convention of 1944 on the establishing of the International Civil Aviation Organisation and with a take-off and arrival runway of at least 800 meters

guideline, the noise contours reports are calculated officially according to the breakdown of the day in the guideline (day: 07:00 - 19:00; evening: 7:00 PM - 23:00; night: 23:00 - 7:00 AM). Since 2015, the annual calculation is no longer carried out by the Acoustics and Thermal Physics Laboratory of KULeuven but by the WAVES research group of the Ghent University. During this transition of executing party, it has been verified that the calculation models and assumptions do not lead to discontinuities in the results.

# 1.4 INM: Integrated Noise Model

For the calculation of the noise contours since 2011, INM 7 (subversion INM 7.0b) has been used. For the years 2000 to 2010, model version 6.0c was always used for the officially reported noise contours. Because the model used and the related aircraft database have an impact on the calculation of the noise contours, the noise contours for the year 2000 and for the years 2006 to 2010 were recalculated with version 7.0b<sup>4</sup>. In this way, it is possible to assess the evolution of the noise contours since 2000 without being affected by the calculation model used.

## 1.5 Population data

The most recent population data available is used to determine the number of residents living inside the contour zones and the number of people who are potentially seriously inconvenienced. Based on inquiries with the Office for Statistics and Economic Information (also called National Institute for Statistics), these data for the year 2016 were revealed to be the population figures as of 1 January 2011.

#### 1.6 Source data

For the calculation of the noise contours and in order to be able to compare the results against those of the noise monitoring network, Brussels Airport Company has made source data available. A comprehensive summary of these source data carrying references to the corresponding files has been included in Appendix 5.6.

#### 1.7 INM Studiy results

Brussels Airport Company was also provided with the following files in digital format by way of appendices to the report:

- UGENT\_EBBR16\_INM\_studie.zip (the INM study used)
- UGENT\_EBBR16\_geluidscontouren.zip (the calculated contours in shape format)

<sup>&</sup>lt;sup>4</sup> With regard to the frequency contours of 60 and 70 dB(A), only the year 2010 was calculated with version 7.0b of the INM calculation model

| • | UGENT_EBBR16_opp_inw.zip within the noise contours) | (the | number | of | residents | and | the | surface | area | as | calculated |
|---|-----------------------------------------------------|------|--------|----|-----------|-----|-----|---------|------|----|------------|
|   |                                                     |      |        |    |           |     |     |         |      |    |            |
|   |                                                     |      |        |    |           |     |     |         |      |    |            |
|   |                                                     |      |        |    |           |     |     |         |      |    |            |
|   |                                                     |      |        |    |           |     |     |         |      |    |            |
|   |                                                     |      |        |    |           |     |     |         |      |    |            |
|   |                                                     |      |        |    |           |     |     |         |      |    |            |
|   |                                                     |      |        |    |           |     |     |         |      |    |            |
|   |                                                     |      |        |    |           |     |     |         |      |    |            |
|   |                                                     |      |        |    |           |     |     |         |      |    |            |
|   |                                                     |      |        |    |           |     |     |         |      |    |            |
|   |                                                     |      |        |    |           |     |     |         |      |    |            |
|   |                                                     |      |        |    |           |     |     |         |      |    |            |
|   |                                                     |      |        |    |           |     |     |         |      |    |            |
|   |                                                     |      |        |    |           |     |     |         |      |    |            |

#### 2 Definitions

# 2.1 Explanation of a few frequently-used terms

#### 2.1.1 Noise contours

As a result of flight traffic, noise impact is either observed or calculated for every point around the airport. Due to a difference in distance from the noise source, these values may vary sharply from one point to another. Noise contours are isolines or lines of equal noise impact. These lines connect together points where equal noise impact is observed or calculated.

The noise contours with the highest values are those situated closest to the noise source. Farther away from the noise source, the value of the noise contours is lower.

#### 2.1.2 Frequency contours

The acoustic impact of overflight by an aircraft can be characterized at every point around the airport by, for example, the maximum noise level observed during overflight. This maximum noise level can be determined, for example, as the maximum of the equivalent sound pressure levels over 1 second  $(L_{Aeq,1s,max})^5$  during this overflight.

The number of times that the maximum sound pressure level exceeds a particular value can be calculated for the passage of all aircraft overflies during a year. The number of times on average that this value is exceeded each day is the excess frequency. Frequency contours connect locations where this number is equal.

#### 2.1.3 Noise zones

A noise zone is the zone delimited by two successive noise contours. The noise zone 60-65 dB(A) is, for example, the zone delimited by the noise contours of 60 and 65 dB(A).

#### 2.1.4 The A-weighted equivalent sound pressure level L<sub>Aeq.T</sub>

The noise caused by overflying aircraft is not a constant noise, but has the characteristic of rising sharply to a maximum level and thereafter declining sharply again. To represent the noise impact at a specific place and as a result of fluctuating sounds over a period, the A-weighted equivalent sound pressure level  $L_{Aeq,T}$  is used (see Figure 1).

 $<sup>^{5}</sup>$  The INM calculation program calculates the quantity  $L_{Amax,slow}$ . However, the values for this quantity are similar to those for the quantity  $L_{Aeq,1s,max}$ .

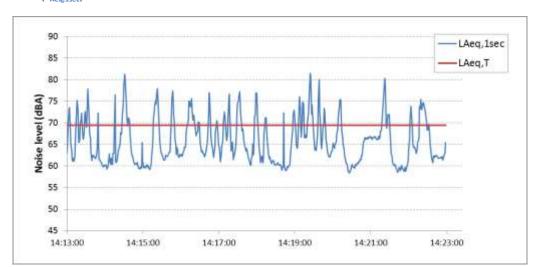



Figure 1: Graph of the A-weighted equivalent sound pressure level ( $L_{Aeq,T}$ ) for a period T=10 minutes, together with the instantaneous ( $L_{Aeq,1sec}$ ) from which this is derived.

The A-weighted equivalent sound pressure level  $L_{Aeq,T}$ , over a period T, is the sound pressure level of the *constant* sound containing the same acoustic energy in that same period as the fluctuating sound. The unit for an A-weighted equivalent sound pressure level is the dB(A).

The designation A-weighted (index A) means that an A-filter is used to determine the sound pressure levels. This filter reflects the pitch sensitivity of the human ear. Sounds at frequencies to which the ear is sensitive are weighted more than sounds at frequencies to which our hearing is less sensitive. Internationally, A-weighting is accepted as the standard measurement for determining noise impact around airports. This A-weighting is also applied in the VLAREM legislation on airports.

Three types of  $L_{Aeq,T}$  contours are calculated in this report:

- $\bullet$  L<sub>day</sub>: the equivalent sound pressure level for the daytime period, defined as the period between 07:00 and 19:00
- L<sub>evening</sub>: the equivalent sound pressure level for the evening period, defined as the period between 19:00 and 23:00
- L<sub>night</sub>: the equivalent sound pressure level for the night period, defined as the period between 23:00 and 07:00

#### 2.1.5 L<sub>den</sub>

The European directive on the control and assessment of environmental noise (transposed in VLAREM 2), recommends using the Lden parameter to determine the annoyance over a longer period. The  $L_{den}$  (Level Day-Evening-Night) is the A-weighted equivalent sound pressure level over 24 hours, with a (penalty) correction of 5 dB(A) applied for noise during the evening period (equivalent to an increase of the number of evening flights by a factor of 3.16), and 10 dB(A) during the night (equivalent to an increase of the number of night flights by a factor of 10). For the calculation of the Lden noise contours, the day division used by section 57 of VLAREM 2 is used, with the evening period from 19:00 to 23:00 and the night period from 23:00 to 07:00.  $L_{den}$  is the weighted energetic

sum of these three periods with a weighting according to the number of hours for each period (12 hours for the day, 4 hours for the evening, and 8 hours for the night).

# 2.2 Link between annoyance and noise impact

An exposure relationship is imposed by VLAREM 2 to determine the number of people who are potentially severely inconvenienced within the  $L_{den}$  noise contour of 55 dB(A). This equation shows the percentage of the population that is severely inconvenienced by the noise impact expressed in  $L_{den}$  (Figure 2).

% severely inconvenienced =  $-9,199*10^{-5}(L_{den}-42)^3+3,932*10^{-2}(L_{den}-42)^2+0,2939(L_{den}-42)^3+3,932*10^{-2}(L_{den}-42)^2+0,2939(L_{den}-42)^3+3,932*10^{-2}(L_{den}-42)^2+0,2939(L_{den}-42)^3+3,932*10^{-2}(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939(L_{den}-42)^2+0,2939$ 

60 50 40 30 30 10 45 50 55 60 65 70 75 Lden (dBA)

Figure 2: Percentage of people who are potentially severely inconvenienced due to Lden for aircraft noise.

(source: VLAREM - environmental legislation based on Miedema 2000)

The aforementioned equation was established from a synthesis/analysis of various noise annoyance studies at various European and American airports carried out by Miedema<sup>6</sup> and was adopted by the WG2 Dose/effect of the European Commission<sup>7</sup>. Note that L<sub>den</sub> only determines around 30% of the variation in reported severe inconvenience. Personal sensitivity and difference in spectro-temporal composition of the exposure mean that at specific places and for specific persons, the inconvenience can be both higher and lower.

Ghent University - INTEC/WAVES

14

<sup>&</sup>lt;sup>6</sup> Miedema H.M.E., Oudshoorn C.G.M., Elements for a position paper on relationships between transportation noise and annoyance, TNO report PG/VGZ/00.052, July 2000

<sup>&</sup>lt;sup>7</sup> European Commission, WG2 – Dose/effect, Position paper on dose response relationships between transportation noise and annoyance, 20 February 2002

# 3 Methodology

Noise contours are calculated using the 'Integrated Noise Model' (INM) of the United States Federal Aviation Administration (FAA). This model and the methodology used comply with the methodology prescribed in the VLAREM legislation (chapter 5.57 Airports).

The procedure for calculating noise contours consists of three phases:

- Collection of information concerning the flight movements, the routes flown, aircraft characteristics and meteorological data.
- Execution of the calculations.
- Processing of the contours into a Geographic Information System (GIS).

# 3.1 Data input

INM calculates noise contours around the airport based on an average day/evening/night input file. An average day is not a typical day on which the airport is used normally. It is based on the data for a complete year, where an average twenty-four hour period is determined by bringing all movements in that year into the calculation, and then dividing it by the number of days in the year.

Aircraft follow certain routes which are essentially determined by the runway used and the SID flown (Standard Instrument Departure) for take-offs or by the runway used and the STAR ('Standard Arrival Route') for arrivals. The existing SIDs and STARs are shown in the AIP, Aeronautical Information Publication. This official documentation specifies the procedures to be followed for the flight movements at a specific airport. Runway usage and flight paths depend on the time of day and are influenced by weather conditions: taking off and landing is with maximum headwind to increase the lift of the wings. This AIP documentation may change over time.

#### 3.1.1 Information about aircraft movements

The following data is required to specify aircraft movements:

- Aircraft type
- Time
- Nature of the movement (departure/arrival)
- Destination or origin
- Runway used
- SID followed

The flight information is provided by Brussels Airport Company as an export of the flight movements from the central database (CDB). All the necessary information is stored in this database. The quality of the data is very good.

A matching INM aircraft type is linked to every aircraft type based on type, engines, registration, etc. In most cases, the aircraft types are present in INM or in the standardized list with valid alternatives.

For a minority of aircraft that cannot yet be identified in INM, an equivalent is sought based on other data (the number and type of engines and the MTOW (maximum take-off weight), etc.).

Helicopters are not included specifically in the calculations but they are added proportionally to the movement type (landing/take-off) and the time of day. Helicopter flights represent about 1% of movements. A SID is not available for some departures of aircraft (usually domestic flights with smaller aircraft). These flights are also added proportionally to the flight data (about 0.8 %).

#### 3.1.2 Radar data

A number of SIDs are given per runway in the Aeronautical Information Publication (AIP). These departure descriptions are not geographical stipulations, but are laid down as procedures. They must be followed when a certain height or geographical location is reached. Reaching this height and/or geographical location depends on the aircraft type, weight (and indirectly the destination) and on weather conditions. This may result in a very large geographical distribution of the actual flight paths for the same SID. This creates bundles of movements that use the same or similar SIDs.

Taking into account each individual radar track results in an enormously long calculation time. A method is therefore available in INM to take this distribution into account. This manual method (one action per bundle) is automated from 2015 without using the internal method in INM.

The SIDs are grouped together for the take-off movements in a number of larger bundles and a static division is used for those bundles based on the actual flown paths. This static method is an improvement compared to the built-in methodology of INM which uses a symmetrical distribution of the actual flown paths while the distribution of the paths in bundles is generally asymmetrical. For a number of frequently-used SIDS, the calculations are refined by a further division based on by aircraft type.

Grouping by approach path is not possible for arrivals using the information in the CDB. For this reason, the bundles for arrivals are divided on the basis of geographical data. Approaches for runways 25R and 25L are from the south-east, north or north-west, or from longer distances aligned with the runway. No distinctions are made by aircraft type for approaches because the approach path is not influenced by this factor.

#### 3.1.3 Meteorological data

For the calculation of the contours for 2016, the actual average meteorological conditions are used. The weather data are available via Brussels Airport Company every twenty minutes. The wind direction, wind speed and temperatures are linked to the individual flight movements. The headwind is calculated for each individual flight movement and for the runway used. In this way, an annual averaged meteorological condition that is weighted with the number of flights under each meteorological condition is obtained.

The wind speed is provided in accordance with the calculation method and converted to knots (kn). The meteorological parameters for 2016 are:

- Average headwind (annual average across all runways, take-off and landing): 4.4 kn
- Average temperature: 11.9 °C or 53.4 °F.
- Average headwind per runway:

o 25R: 4.7kn.

o 25L: 4.7kn.

o 07R: 4.2kn.

o 07L: 4.3kn.

o 19: 4.0kn.

o 01: 3.9kn.

#### 3.1.4 Take-off profile

The weight of the aircraft influences the take-off profile at departure. Given that this actual weight is not available in the CDB, a method proposed by INM is used to factor in this effect (INM parameter stage). It is assumed that the greater the distance from Brussels Airport to the destination, the more this aircraft will operate at its maximum take-off weight. This is justified, among others, by the fact that the kerosene constitutes an important part of the total weight of an aircraft. This complies with the methodology of the preceding annual reports.

The co-ordinates of all airports can be found on the website 'http://openflights.org/data.html'. This list is used to calculate the distance to Brussels Airport from any airport.

#### 3.2 Execution of the contour calculations

#### 3.2.1 Match between measurements (NMS) and calculations (INM)

INM enables calculations at specific locations around the airport. To check the assumptions concerning the input data and the accuracy of the INM, the calculated noise impact is compared with sound measurements taken at 30 locations.

The comparison with measurements provides a validation of the calculations. Note that the noise calculations as well as the noise measurements imply specific uncertainties. For example, the noise calculations group flight movements and do not consider the actual height of an aircraft flying over (this is determined by the assigned INM standard departure profile, not by the actual radar data). The measuring stations are unmanned because they are monitored continuously throughout the year. Local deviations caused by local noise events for example may affect the measured levels. Although these deviations are removed from the measurements as much as possible, their contribution to the measurements recorded cannot always be avoided.

Reliability of the calculation method can however be achieved when there is sufficient matching between the annual averages of the measured noise events and the annual average forecast based on the average day, across a sufficient number of measuring stations.

#### 3.2.2 Technical data

The calculations are carried out with INM 7.0b with a refinement 9 and tolerance 0.5 within a grid from 8 nmi<sup>8</sup> northwards and southward in relation to the airport reference measuring point, and 18 nmi westwards and 16 nmi eastwards. The altitude of the airport reference measuring point in relation to sea level is 184 ft

#### 3.2.3 Calculation of frequency contours

The noise contours are calculated directly in INM. Frequency contours show the number of times a certain value is exceeded; these contours cannot be provided directly by INM.

INM is able to calculate the maximum noise pressure on a regular grid per aircraft movement. This information is input in GIS to calculate frequency contours with standard functionality.

-

<sup>&</sup>lt;sup>8</sup> 1 nmi (nautical mile) = 1.852 km (kilometre)

#### 4 Results

# 4.1 Background information about interpreting the results

#### 4.1.1 Number of flight movements

One of the most important factors in the calculation of the annual noise contours around an airport is the number of movements which occurred during the past year. Following the decline of the number of movements between 2011 and 2013, there was an increase of 6.9% in 2014 and a further increase of 3.4% in 2015. In 2016 the number of aircraft movements fell to 223,688 (-6.5%). This is largely a result of the temporary closure and staged restart after the attacks on the airport on 22 March 2016.

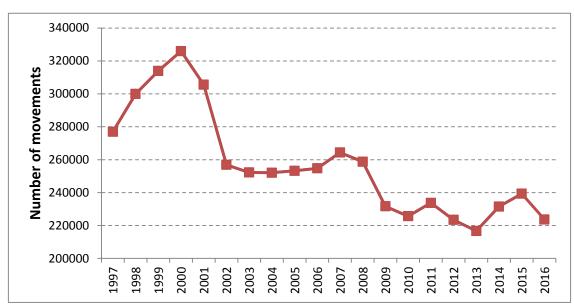



Figure 3: Evolution of flight traffic (all movements) at Brussels Airport.

The number of night-time movements (23:00-06:00) declined in 2016 by 4.7% from 16,521 in 2015 to 15,751 (including 4,941 take-offs) in 2016. This includes helicopter movements and the movements exempt from slot co-ordination such as government flights, military flights, etc.

In 2016, the number of assigned night slots<sup>9</sup> for aircraft movements remained at 15,140, including 4,457 for departures, within the limitations imposed on the slot coordinator of Brussels Airport who since 2009 has been authorized to distribute a maximum of 16,000 night slots, of which a maximum of 5,000 may be allocated to departures (MD 21/01/2009, official amendment to the environmental

<sup>&</sup>lt;sup>9</sup> night slot: permission given by the co-ordinator of the Brussels National airport, pursuant to Regulation (EEC) No. 95/93 of the Council of 18 January 1993 concerning common rules for allocating slots at community airports, to use the entire infrastructure required for the exploitation of an air service at the airport of Brussels National on a specified date and at a specified landing and take-off time during the night as assigned by the coordinator;

permit). There were 157 exempted movements with helicopters and 208 exempted movements with aircraft during the night period (23:00-06:00).

The number of movements during the operational day period (06:00 to 23:00) dropped by 6.7% from 222,828 in 2015 to 207,937 in 2016.



Figure 4: Evolution of flight traffic during the night (23:00-06:00) at Brussels Airport.

As a result of changes to the Vlarem legislation in 2005, noise contours are no longer measured based on a daily breakdown that coincides with the operating schedule at Brussels Airport, but, rather, the day is split up into a daytime period (07:00 - 19:00), an evening period (19:00 - 23:00) and a night period (23:00 - 07:00). The number of movements in 2016, the data for 2015 and the trend are shown in Table 1:. The numbers for the night period are broken down further by operational nights (23:00 - 06:00) and the morning period (06:00 - 07:00).

Table 1: Number of movements (incl. helicopter movements) in 2016 and the change vs.2015 (VLAREM division of the day).

|                         | 2015     |            |         |          | 2016       |         | Relative change versus 2014 |            |        |
|-------------------------|----------|------------|---------|----------|------------|---------|-----------------------------|------------|--------|
| period                  | landings | departures | total   | landings | departures | total   | landings                    | departures | total  |
| day (07:00 - 19:00)     | 80,036   | 80,219     | 160,255 | 74,207   | 74,053     | 148,260 | -7.3%                       | -7.7%      | -7.5%  |
| evening (19:00 - 23:00) | 26,188   | 25,681     | 51,869  | 25,215   | 25,412     | 50,627  | -3.7%                       | -1.0%      | -2.4%  |
| night (23:00 - 07:00)   | 13,456   | 13,769     | 27,225  | 12,426   | 12,375     | 24,801  | -7.7%                       | -10.1%     | -8.9%  |
| 00:00 - 24:00           | 119,680  | 119,669    | 239,349 | 111,848  | 111,840    | 223,688 | -6.5%                       | -6.5%      | -6.5%  |
| 06:00 - 23:00           | 108,140  | 114,688    | 222,828 | 101,038  | 106,899    | 207,937 | -6.6%                       | -6.8%      | -6.7%  |
| 23:00 - 06:00           | 11,540   | 4,981      | 16,521  | 10,810   | 4,941      | 15,751  | -6.3%                       | -0.8%      | -4.7%  |
| 06:00 - 07:00           | 1,916    | 8,788      | 10,704  | 1,616    | 7,434      | 9,050   | -15.7%                      | -15.4%     | -15.5% |

The general decline of 6.5% in the number of movements on annual basis between 2015 and 2016 manifests itself largely in the day period (- 7.5%) and night period (- 8.9%). During the evening period, this decline is less pronounced (-2.4%).

The number of departures during the night for which contours have been calculated (23:00 - 07:00) has declined by 10.1%. Between 23:00 and 06:00 is this only 0.8%; between 06:00 and 07:00 15.4%. The night departures (23:00 to 06:00) are mainly performed by DHL and have suffered little impact from the attacks on the airport. The impact of the attacks on the passenger flights between 06:00 and 07:00 is significant.

#### 4.1.2 Other important evolutions

In addition to the number of movements, a number of other parameters also determine the size and the position of the noise contours, such as the runway and route used, flight procedures and the deployed fleet. The most important changes are summarised below.

#### 4.1.2.1 Evolution of the movements per month for day, evening and night

The attack on the airport on 22 March 2016 not only demanded a major human loss but also had an important impact on the aircraft movements in 2016. The total number of flights has decreased and that can primarily be attributed to the strong decline of the operations after the attacks. In the overview on year basis, it was already visible that the average number of flights during the evening period declined less sharply than the annual average; 3.7% for the landings and only 1.0% for departures. This will be studied further in an evaluation based on the movements per month (see Table2). The strong increases are accented in orange, the strong decline outside the two months with partial closure of the airport in green.

The impact of the attacks was greatest in March, April. (These months are accented in grey in the table.) The decrease in the number of flights in March correspond to one week complete closure in the month of March (25%). In April, the decrease is approximately 42% during the day and slightly less during the evening and night (26% and 36%). The number of aircraft movements resumed relatively quickly the level of before the attack (June and July) but there are nevertheless clear differences for the different periods of the day.

Table2: Evolution of the number of movements in 2016 compared to 2015 according to Vlarem 2 division of day (day, evening, night) broken down per month.

|     |        | Landings     |        | Departures            |         |        |  |  |
|-----|--------|--------------|--------|-----------------------|---------|--------|--|--|
|     | evolu  | ition 2015 - | 2016   | evolution 2015 - 2016 |         |        |  |  |
|     | Day    | Evening      | Night  | Day                   | Evening | Night  |  |  |
| Jan | 0.3%   | 9.1%         | -14.0% | 1.5%                  | 3.2%    | -8.2%  |  |  |
| Feb | -0.9%  | 7.2%         | -2.8%  | 1.5%                  | 1.0%    | -5.1%  |  |  |
| Mar | -26.7% | -25.2%       | -31.9% | -26.6%                | -28.9%  | -22.9% |  |  |
| Apr | -42.2% | -36.2%       | -26.1% | -42.5%                | -30.4%  | -36.6% |  |  |
| May | -2.6%  | 2.9%         | -10.4% | -3.2%                 | 5.9%    | -13.2% |  |  |
| Jun | -7.6%  | -3.2%        | -2.8%  | -7.3%                 | 2.3%    | -11.9% |  |  |
| Jul | -3.5%  | 0.7%         | -5.6%  | -4.1%                 | 6.0%    | -11.0% |  |  |
| Aug | 0.6%   | 1.9%         | -8.2%  | -2.9%                 | 13.3%   | -6.8%  |  |  |
| Sep | -2.0%  | -1.6%        | -1.5%  | -2.0%                 | 4.8%    | -12.0% |  |  |
| Oct | -3.3%  | -0.5%        | 0.1%   | -4.4%                 | 6.5%    | -6.5%  |  |  |
| Nov | -1.6%  | -2.5%        | 3.0%   | -2.8%                 | -3.1%   | 11.6%  |  |  |
| Dec | 0.8%   | 3.1%         | 6.5%   | -0.3%                 | 4.6%    | 12.4%  |  |  |

#### **Arrivals**

During the day there is a slight decline over the whole year. For the evening, there was a strong increase before the attacks and after the attacks the number of flights very quickly reached the level of 2015 (see light blue cells) but no longer showed the strong increase in comparison with the two months before the attacks.

#### **Departures**

From May 2015, the number of departures during the evening is almost systematically higher than the number of departures in the same months in 2015 (orange in the table).

#### 4.1.2.2 Fleet changes during the operational night

The most frequently used aircraft during the operational night period (23:00 - 06:00) in 2016 was the A320 (15.4% of the movements in 2016), following by the B752 (14.6%). The B734 increases strongly (from 5.5% to 12.2%). The A306 has a relatively smaller share than the B734 (from 8.9% to 10.7%) but increases in absolute figures (1466 to 1682). This is followed by the B738 (8.8%, increasing share) and the A319 (7.6%, declining share). This is the reverse movement in comparison with the evolution of 2014 to 2015. This is followed by the A333 and the B763 with respectively 7.0% and 6.1%.

The ratio is clearly different for departures during the operational night. The B752 is the aircraft that takes off the most frequently (22.9%), followed by the B734 (17.7%), the A306 (16.6%). The B734 and A306 both increase but the B734 has a greater share in 2016 than the A306 (increases from 274 to 873 departures). The B738 shows a decline of 82% (458 to 81 movements) and also the ATP drops by 33%.

The number of movements in the year 2016 involving aircraft with an MTOW in excess of 136 tons (heavy aircraft) during the operational night period is 4,459, an increase of 9.9% compared to 2015 (4,056 movements). This is a continuation of the rising trend that was concluded in the previous report (3,422 movements in 2014). Departures of heavy aircraft most frequently involve the A306 (from 720 to 818), the B763 (from 480 to 493) and the B77L (from 157 to 167). The evolution of the most frequently used aircraft types during the operational night period are set out in Table3 (heavy aircraft) and Table4 (lighter aircraft).

Table3: Evolution of the number of flight movements per aircraft type during the operational night period (23:00-06:00) for the (MTOW > 136 tons) aircraft types.

|                |      | Lanc | lings     |               | Departures |      |           |               |  |
|----------------|------|------|-----------|---------------|------------|------|-----------|---------------|--|
| MTOW > 136 ton | 2015 | 2016 | Evolution | Evolution (%) | 2015       | 2016 | Evolution | Evolution (%) |  |
| A333           | 858  | 1103 | 245       | 29%           | 3          | 0    | -3        | -100%         |  |
| A306           | 746  | 864  | 118       | 16%           | 720        | 818  | 98        | 14%           |  |
| B763           | 518  | 472  | -46       | -9%           | 480        | 493  | 13        | 3%            |  |
| A332           | 379  | 339  | -40       | -11%          | 8          | 61   | 53        | 663%          |  |
| B744           | 40   | 38   | -2        | -5%           | 14         | 18   | 4         | 29%           |  |
| B772           | 3    | 0    | -3        | -100%         | 1          | 0    | -1        | -100%         |  |
| A310           | 4    | 1    | -3        | -75%          | 4          | 1    | -3        | -75%          |  |
| B788           | 29   | 59   | 30        | 103%          | 0          | 8    | 8         |               |  |
| B748           | 9    | 0    | -9        | -100%         | 9          | 1    | -8        | -89%          |  |
| A343           | 4    | 0    | -4        | -100%         | 4          | 3    | -1        | -25%          |  |
| DC10           | 1    | 0    | -1        | -100%         | 0          | 0    | 0         |               |  |
| B762           | 22   | 0    | -22       | -100%         | 23         | 1    | -22       | -96%          |  |
| B77W           | 2    | 2    | 0         | 0%            | 0          | 1    | 1         |               |  |
| C17            | 3    | 2    | -1        | -33%          | 3          | 0    | -3        | -100%         |  |
| B77L           | 9    | 3    | -6        | -67%          | 157        | 167  | 11        | 7%            |  |

Table4: Evolution of the number of flight movements per aircraft type during the operational night period (23:00-06:00) for the most common light (MTOW < 136 tonnes) aircraft types.

|                | Landings |      |           |               |      | Depa | rtures    |               |
|----------------|----------|------|-----------|---------------|------|------|-----------|---------------|
| MTOW < 136 ton | 2015     | 2016 | Evolution | Evolution (%) | 2015 | 2016 | Evolution | Evolution (%) |
| A320           | 2711     | 2037 | -674      | -25%          | 486  | 394  | -92       | -19%          |
| B738           | 987      | 1212 | 225       | 23%           | 142  | 173  | 31        | 22%           |
| B752           | 1299     | 1166 | -133      | -10%          | 1282 | 1132 | -150      | -12%          |
| A319           | 1320     | 1120 | -200      | -15%          | 154  | 73   | -81       | -53%          |
| B734           | 638      | 1044 | 406       | 64%           | 274  | 873  | 599       | 219%          |
| B737           | 284      | 239  | -45       | -16%          | 13   | 10   | -3        | -23%          |
| E190           | 285      | 198  | -87       | -31%          | 5    | 17   | 12        | 240%          |
| RJ1H           | 93       | 169  | 76        | 82%           | 26   | 28   | 2         | 8%            |
| EXPL           | 115      | 107  | -8        | -7%           | 56   | 50   | -6        | -11%          |
| B733           | 460      | 83   | -377      | -82%          | 458  | 81   | -377      | -82%          |
| B463           | 10       | 82   | 72        | 720%          | 1    | 1    | 0         | 0%            |
| ATP            | 209      | 73   | -136      | -65%          | 316  | 213  | -103      | -33%          |
| A321           | 169      | 42   | -127      | -75%          | 113  | 99   | -14       | -12%          |
| C56X           | 25       | 31   | 6         | 24%           | 10   | 15   | 5         | 50%           |
| F2TH           | 15       | 25   | 10        | 67%           | 12   | 7    | -5        | -42%          |
| F100           | 3        | 22   | 19        | 633%          | 2    | 2    | 0         | 0%            |
| C130           | 19       | 20   | 1         | 5%            | 2    | 3    | 1         | 50%           |
| FA7X           | 12       | 17   | 5         | 42%           | 14   | 14   | 0         | 0%            |
| E145           | 6        | 17   | 11        | 183%          | 8    | 5    | -3        | -38%          |
| E135           | 11       | 15   | 4         | 36%           | 5    | 13   | 8         | 160%          |
| GLF5           | 6        | 14   | 8         | 133%          | 3    | 3    | 0         | 0%            |
| C25A           | 10       | 11   | 1         | 10%           | 6    | 7    | 1         | 17%           |
| F900           | 17       | 11   | -6        | -35%          | 18   | 9    | -9        | -50%          |
| C25B           | 7        | 10   | 3         | 43%           | 2    | 3    | 1         | 50%           |
| LJ45           | 6        | 10   | 4         | 67%           | 8    | 10   | 2         | 25%           |
| C510           | 15       | 10   | -5        | -33%          | 11   | 5    | -6        | -55%          |

#### 4.1.2.3 Runway and route usage

#### <u>Preferential route usage</u>

The preferential runway usage, published in the AIP (Belgocontrol), shows which runway should preferably be used, depending on the time when the movement occurs, and in some cases on the destination and the MTOW of the aircraft. This scheme did not change during the year 2016 (see Table5).

If the preferential runway configuration cannot be used (for example due to meteorological conditions, works on one of the runways, etc.), then Belgocontrol will choose the most suitable alternative configuration, taking account the weather conditions, the equipment of the runways, the traffic density, etc. In this respect, conditions are tied to the preferential runway usage arrangements, including wind limits expressed as a maximum crosswind and maximum tailwind at which each runway can be used. If these limits are exceeded, air traffic control must switch to an alternative configuration. Under preferential runway usage conditions, the maximum tailwind for gusts is 7 kt and the maximum crosswind is 20 kt. In the event of alternative runway usage, the maximum speeds for gusts are also 20 kt for crosswind but only 3 kt for tailwind.

Table5: Preferential runway usage since 19/09/2013 (local time) (source: AIP 10/12/2015 to 08/12/2016)

|                    |           | Da                     | ау                     | Night                  |
|--------------------|-----------|------------------------|------------------------|------------------------|
|                    |           | 06:00 to 15:59         | 4:00 PM to<br>10:59 PM | 11:00 PM to 5:59 AM    |
| Mon, 06:00 -       | Departure | 25                     | SR .                   | 25R/19 <sup>(1)</sup>  |
| Tues 05:59         | Landing   | 25L/                   | 25R                    | 25R/25L <sup>(2)</sup> |
| Tues, 06:00 -      | Departure | 25                     | SR                     | 25R/19 <sup>(1)</sup>  |
| Wedn 05:59         | Landing   | 25L/                   | 25R                    | 25R/25L <sup>(2)</sup> |
| Wedn, 06:00 -      | Departure | 25                     | iR .                   | 25R/19 <sup>(1)</sup>  |
| Thurs 05:59        | Landing   | 25L/                   | 25R                    | 25R/25L <sup>(2)</sup> |
| Thurs, 06:00 - Fri | Departure | 25                     | SR                     | 25R/19 <sup>(1)</sup>  |
| 05:59              | Landing   | 25L/                   | 25R                    | 25R/25L <sup>(2)</sup> |
| Fri, 06:00 -       | Departure | 25                     | iR .                   | 25R <sup>(3)</sup>     |
| Sat 05:59          | Landing   | 25L/                   | 25R                    | 25R                    |
| Sat, 06:00 -       | Departure | 25R                    | 25R/19 <sup>(1)</sup>  | 25L <sup>(4)</sup>     |
| Sun 05:59          | Landing   | 25L/25R                | 25R/25L <sup>(2)</sup> | 25L                    |
| Sun, 06:00 -       | Departure | 25R/19 <sup>(1)</sup>  | 25R                    | 19 <sup>(4)</sup>      |
| Mon 05:59          | Landing   | 25R/25L <sup>(2)</sup> | 25L/25R                | 19                     |

<sup>(1)</sup> Runway 25R for traffic via ELSIK, NIK, HELEN, DENUT, KOK and CIV / Runway 19 for traffic via LNO, SPI, SOPOK, PITES and ROUSY (aircraft with MTOW between 80 and 200 tonnes can use runway 25R or 19, aircraft with MTOW > 200 tonnes must use runway 25R, regardless of their destination).

- (2) Runway 25L only if air traffic control considers this necessary.
- (3) Between 01:00 and 06:00, no slots may be allocated for departures.
- (4) Between 00:00 and 06:00, no slots may be allocated for departures.

#### Runway usage

The major maintenance work to runway 25L-07R during the period 27 May 2015 to 19 August 2015 had a strong influence on runway usage in the year 2015. During this work, the landings that under normal circumstances would be handled on runway 25L were shifted to runway 25R, while a section of the departures from this runway 25R were in turn shifted to runway 19. This meant that the portion of departures on runway 25R dropped significantly from 82% in 2014 to 73% in 2015. For 2016, this portion rose again to 81%. The shift in the use of the landing runways that was set for the year 2015 by this work (42% on runway 25L, 40% on runway 25R in 2015 compared to 55% on runway 25L and 27% on runway 25R in the year 2014) was reversed in the year 2016 (53% on runway 25L and 29% on runway 25R).

From 26 July to 20 September 2016, the transverse runway (01/19) was renovated. Runway 19 was used as preferential runway during part of the weekend and also in the nights of Monday to Thursday (see table 4). During the closure of the runway, departures were shifted from runway 19 to runway 25R. The number of departures from runway 19 was, in 2015, exceptionally high as a consequence of the renovation work to 25L (from 4,702 in 2014 to 14,444 in 2015). Since runway 25L became fully available in 2016 and additionally runway 19 was temporarily unavailable due to renovation work, the number of departures from runway 19 dropped sharply to 3,143 in 2016.

Runway 01 is used for landings in an east-westerly wind. During the period of renovation of this runway (26 July to 20 September 2016), these landings were shifted to runway 07L. The lack of an ILAS on this runway means that the aircraft normally used the VOR procedure whereby they orientate themselves on the BUB beacon that is located in the extension of runway 07R. This means that the aircraft do not fly straight on in the axis of the runway but must, at the end, make a turn to

move into the extension of the runway (see green lines on figure 5). These procedures can only be used in daylight. During the renovation work, an additional procedure was published for runway 07L (PBN approach) that could be used in the periods without daylight. In this procedure, whereby use was made of satellite navigation, the aircraft farther from the airport already flew in the axis of the runway (see red lines on figure 5). In total, 252 flights made use of this procedure. Note that this operational situation (landing on runway 07L) can also arise in a strong south-easterly wind. If the cross wind is too strong, runway 01/19 is not available and landings are also made on 07L. In May 2016, such meteorological conditions forced Belgocontrol on several occasions to direct landings to runway 07L. In total, the number of landings on runway 07L rose from 2,814 in 2015 to 4,202 in 2016.

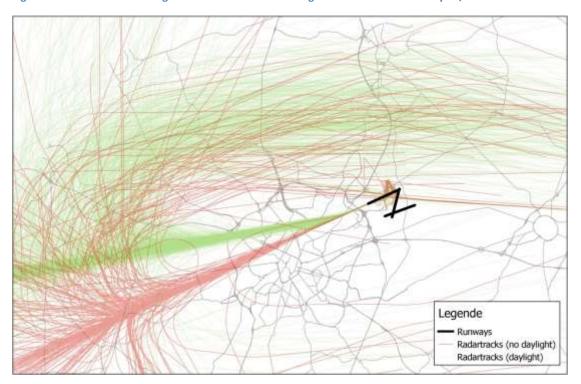



Figure 5: radar tracks of the flights that landed on 07L during the renovation of runway 01/19.

A complete overview of runways used in 2016 is included in appendix 5.1.

#### Changes in the SIDs

On 2/4/2015, several changes were made to the SIDs of runways 25R/25L as a result of a moratorium imposed by the Federal Government, and the situation was rolled back to that of 6/2/2014. No physical modifications to the SIDs took place in 2016. The nomenclature of the SIDs has been modified by a shift of the magnetic north. There were no significant modifications identified in the distribution of the aircraft over the various routes.

#### 4.2 Noise measurements - L<sub>Aeq,24h</sub>

The INM software enables a number of acoustic parameters to be calculated at a specified location around the airport By performing this calculation at the locations of the measuring stations of the Noise Monitoring System(NMS), it can be examined to what extent the calculated values correspond to the values registered and processed by the measuring system. Different data sources are used in the NMS system and correlated with each other: noise measurements, CDB, radar tracks and weather. Measurements and calculations are compared for the parameters  $L_{Aeg,24h}$ ,  $L_{night}$  and  $L_{den}$ .

The calculated values are compared with the values resulting from correlated measured events. Only the acoustic parameters of an event are recorded by the monitoring network. To select the events resulting from aircraft, an automatic link is made in the NMS to the flight and radar data; these events are correlated.

The system of correlation is definitely not perfect and events are regularly attributed to overflying traffic and vice versa. To minimize the contribution of such incorrect classifications, a trigger level is set with a minimum duration time: an event is only expected when the trigger level of 10 s is exceeded. The event ends when the trigger level is not achieved during 5 s. The trigger levels are set for each measuring station and depend on the local noise in the area. These trigger levels were evaluated in the beginning of 2015 and adjusted for several measuring stations. On that occasion, the maximum duration of an event was increased from 75 s (for 2014) to 125 s. The probability that this is caused by an aircraft is very small for longer events. Note that a correlation is also necessary with a registered aircraft movement besides the conditions relating to the event duration and trigger level.

The table below compares the values simulated in the INM at the different measuring station locations and the values calculated on the basis of the correlated events for the parameters  $L_{Aeq,24h}$ ,  $L_{night}$  and  $L_{den}$ . The results of the LNE measuring stations (with codes NMT 40-1 and higher) are recorded in addition to the measuring stations of Brussels Airport Company. The measuring data of these measuring stations are input and linked to flight data within the NMS of the airport. For measuring stations of the BIM in the Brussels-Capital Region, this procedure is not possible because the measuring data is bot supplied to BAC (until 2009, the measuring data of the BIM for two measuring stations - Haren and Evere - were made available to BAC). An overview of the locations of all measuring stations is included in Appendix 5.2.

The measuring stations NMT01-2, NMT03-3, NMT 15-3 and NMT 23-1 are situated on the airport site and/or in the immediate vicinity of the runway system and the airport facilities. The flight-correlated noise events comprise contributions from ground noise as well as overflights, or a combination of both. The link to specific flight movements is not always equally reliable for these measuring stations. For these reasons, the measured values at these measuring stations are less relevant for assessing noise emission from overflying aircraft, and these are consequently not considered in the comparison of simulations and measurements.

The fraction of time that the measuring system is active (so-called uptime) is very high with an average of 99.7 % across all measuring stations. This is comparable with 2015. It is expected that practically no noise events are missed when the measuring stations are off-line. The lowest uptime fraction was recorded at measuring station Grimbergen (NMT13-1), but this is still 96.5 %.

The comparison between calculations and measurements based on the LAeq<sub>,24h</sub> shows that the discrepancy between the calculated value and the measured value for all the measuring stations, except NMT01-2 (Perk), and after exclusion of the measuring points NMT01-2, NMT 15-3 and NMT 23-1 (see previous paragraph) remains limited to 2 dB(A). The measuring station Perk lies in the extension of runway 01 and in 2016 only 69 flights departure from this runway (3,430 in 2015). The resulting margin for error is large and that is reflected in the comparison between the measurements and the calculations. At 9 measuring stations, the deviation is limited to up to 0.3 dB(A). The general discrepancy between simulations and measurements is 0.9 dB(A) (root-mean-square error, RMSE). If Perk is removed from this evaluation, the RMSE drops to 0.8 dB(A).

At the height of the measuring post in Bertem (NMT48-3), no systematic aircraft passages take place any longer. This measuring station is excluded from the statistical evaluation. The overall deviation between measurements and simulations for  $L_{night}$  is slightly higher (1.4 dB(A) RMSE, excluding measuring points NMT01-2, NMT03-3, NMT 15-3 and NMT 23-1 and NMT48-3). For 2015, this value was 1.3 dB(A). At measuring locations Perk, Grimbergen and Meise, the predicted level is too high when compared with the measurements (more than 2.0 dB(A)). The simulations show a limited linear average difference globally across all relevant measuring locations (-0.1 dB(A), excluding measuring points NMT01-2, NMT03-3, NMT 15-3, NMT23-1 and NMT 48-3.

For the noise indicator  $L_{den}$  the RMSE is 1.4 dB(A) (excluding NMT01-2, NMT03-3, NMT15-3, NMT23-1). When the measuring stations NMT01-2, NMT03-3, NMT15-3, NMT23-1, Perk and Bertem (see previous paragraph) are not considered, the maximum underestimation of the measurements in Kraainem appear to be 1.6 dB(A).

At the start of 2015, the threshold values for several measuring stations of BAC were modified. This meant that more noise events were identified and also more events are correlated with the radar data. These modifications decrease significantly (by more than 1 dB(A) on  $L_{Aeq,24h}$ ) the deviations between measurements and simulations in the measuring stations at Sterrenbeek and Duisburg. Significantly worse similarities were not identified (with the exclusion of measuring station in Perk, see previous argument).

Table 6: Match between calculations and measurements for noise indicator  $L_{Aeq,24h}$  (in dB(A)). The grey rows in the table indicate comparisons between measurements and calculations which are difficult to perform (see text).

| Location code | location name       | measurements<br>(dB(A)) | calculations<br>(dB(A)) | difference<br>(dB(A)) |
|---------------|---------------------|-------------------------|-------------------------|-----------------------|
| NMT01-2       | STEENOKKERZEEL      | 57.7                    | 62.1                    | -4.4                  |
| NMT02-2       | KORTENBERG          | 67.8                    | 67.9                    | -0.2                  |
| NMT03-3       | HUMELGEM-Airside    | 63.7                    | 64.0                    | -0.3                  |
| NMT04-1       | NOSSEGEM            | 62.8                    | 61.6                    | 1.1                   |
| NMT06-1       | EVERE               | 51.5                    | 50.2                    | 1.3                   |
| NMT07-1       | STERREBEEK          | 46.6                    | 46.1                    | 0.5                   |
| NMT08-1       | KAMPENHOUT          | 54.8                    | 54.8                    | 0.0                   |
| NMT09-2       | PERK                | 44.5                    | 46.9                    | -2.4                  |
| NMT10-1       | NEDER-OVER-HEEMBEEK | 55.0                    | 55.2                    | -0.2                  |
| NMT11-2       | SINT-PIETERS-WOLUWE | 52.4                    | 51.3                    | 1.1                   |
| NMT12-1       | DUISBURG            | 46.0                    | 45.8                    | 0.2                   |
| NMT13-1       | GRIMBERGEN          | 47.0                    | 46.4                    | 0.7                   |
| NMT14-1       | WEMMEL              | 47.9                    | 47.8                    | 0.1                   |
| NMT15-3       | ZAVENTEM            | 45.2                    | 55.4                    | -10.2                 |
| NMT16-2       | VELTEM              | 57.0                    | 56.2                    | 0.8                   |
| NMT19-3       | VILVOORDE           | 52.9                    | 52.6                    | 0.3                   |
| NMT20-2       | MACHELEN            | 53.2                    | 53.8                    | -0.6                  |
| NMT21-1       | STROMBEEK-BEVER     | 52.2                    | 50.8                    | 1.4                   |
| NMT23-1       | STEENOKKERZEEL      | 65.1                    | 67.7                    | -2.5                  |
| NMT24-1       | KRAAINEM            | 54.3                    | 52.7                    | 1.6                   |
| NMT26-2       | BRUSSEL             | 47.9                    | 47.8                    | 0.2                   |
| NMT40-1*      | KONINGSLO           | 52.8                    | 52.2                    | 0.6                   |
| NMT41-1*      | GRIMBERGEN          | 47.3                    | 48.2                    | -0.9                  |
| NMT42-2*      | DIEGEM              | 63.2                    | 64.7                    | -1.4                  |
| NMT43-2*      | ERPS-KWERPS         | 55.8                    | 56.7                    | -0.8                  |
| NMT44-2*      | TERVUREN            | 44.3                    | 45.6                    | -1.3                  |
| NMT45-1*      | MEISE               | 44.8                    | 45.7                    | -0.8                  |
| NMT46-2*      | WEZEMBEEK-OPPEM     | 54.8                    | 54.1                    | 0.7                   |
| NMT47-3*      | WEZEMBEEK-OPPEM     | 47.5                    | 47.6                    | -0.1                  |
| NMT48-3*      | BERTEM              | 31.0                    | 31.0                    | -0.1                  |

<sup>\*</sup> LNE noise data off-line correlated by the NMS

Table 7: Match between calculations and measurements for noise indicator  $L_{night}$  (in dB(A)). The grey rows in the table indicate comparisons between measurements and calculations which are difficult to perform (see text).

| Location code | location name       | measurements | calculations    | difference<br>(dB(A)) |
|---------------|---------------------|--------------|-----------------|-----------------------|
|               |                     | (dB(A))      | (dB(A))<br>62.3 | (dB(A))<br>-6.7       |
| NMT01-2       | STEENOKKERZEEL      | 55.6         | 02.0            | •                     |
| NMT02-2       | KORTENBERG          | 63.3         | 63.6            | -0.3                  |
| NMT03-3       | HUMELGEM-Airside    | 58.7         | 58.8            | -0.1                  |
| NMT04-1       | NOSSEGEM            | 60.0         | 58.3            | 1.7                   |
| NMT06-1       | EVERE               | 44.5         | 43.8            | 0.7                   |
| NMT07-1       | STERREBEEK          | 48.4         | 46.8            | 1.6                   |
| NMT08-1       | KAMPENHOUT          | 52.9         | 52.8            | 0.1                   |
| NMT09-2       | PERK                | 40.0         | 44.6            | -4.6                  |
| NMT10-1       | NEDER-OVER-HEEMBEEK | 51.1         | 50.8            | 0.3                   |
| NMT11-2       | SINT-PIETERS-WOLUWE | 47.6         | 46.4            | 1.2                   |
| NMT12-1       | DUISBURG            | 42.6         | 42.2            | 0.4                   |
| NMT13-1       | GRIMBERGEN          | 38.5         | 40.7            | -2.2                  |
| NMT14-1       | WEMMEL              | 41.9         | 43.5            | -1.6                  |
| NMT15-3       | ZAVENTEM            | 47.5         | 51.6            | -4.1                  |
| NMT16-2       | VELTEM              | 52.5         | 52.0            | 0.5                   |
| NMT19-3       | VILVOORDE           | 49.1         | 48.5            | 0.6                   |
| NMT20-2       | MACHELEN            | 50.3         | 50.3            | 0.0                   |
| NMT21-1       | STROMBEEK-BEVER     | 47.5         | 47.1            | 0.4                   |
| NMT23-1       | STEENOKKERZEEL      | 64.0         | 66.1            | -2.1                  |
| NMT24-1       | KRAAINEM            | 48.9         | 47.3            | 1.6                   |
| NMT26-2       | BRUSSEL             | 45.5         | 44.8            | 0.7                   |
| NMT40-1*      | KONINGSLO           | 48.5         | 48.3            | 0.2                   |
| NMT41-1*      | GRIMBERGEN          | 42.4         | 43.5            | -1.1                  |
| NMT42-2*      | DIEGEM              | 59.2         | 59.5            | -0.3                  |
| NMT43-2*      | ERPS-KWERPS         | 50.5         | 51.9            | -1.4                  |
| NMT44-2*      | TERVUREN            | 44.1         | 44.0            | 0.1                   |
| NMT45-1*      | MEISE               | 38.5         | 40.5            | -2.0                  |
| NMT46-2*      | WEZEMBEEK-OPPEM     | 49.9         | 49.0            | 0.9                   |
| NMT47-3*      | WEZEMBEEK-OPPEM     | 48.3         | 47.2            | 1.1                   |
| NMT48-3*      | BERTEM              | 12.9         | 27.2            | -14.3                 |

 $<sup>\</sup>ensuremath{^{*}}$  LNE noise data off-line correlated by the NMS

Table 8: Match between calculations and measurements for noise indicator  $L_{den}$  (in dB(A)). The grey rows in the table indicate comparisons between measurements and calculations which are difficult to perform (see text).

| Location code | location name       | measurements<br>(dB(A)) | calculations<br>(dB(A)) | difference<br>(dB(A)) |
|---------------|---------------------|-------------------------|-------------------------|-----------------------|
| NMT01-2       | STEENOKKERZEEL      | 62.9                    | 68.7                    | -5.8                  |
| NMT02-2       | KORTENBERG          | 71.7                    | 72.0                    | -0.3                  |
| NMT03-3       | HUMELGEM-Airside    | 67.5                    | 67.6                    | -0.1                  |
| NMT04-1       | NOSSEGEM            | 67.6                    | 66.1                    | 1.5                   |
| NMT06-1       | EVERE               | 54.7                    | 53.6                    | 1.1                   |
| NMT07-1       | STERREBEEK          | 54.2                    | 53.0                    | 1.2                   |
| NMT08-1       | KAMPENHOUT          | 60.1                    | 60.0                    | 0.1                   |
| NMT09-2       | PERK                | 47.8                    | 52.0                    | -4.2                  |
| NMT10-1       | NEDER-OVER-HEEMBEEK | 59.2                    | 59.5                    | -0.3                  |
| NMT11-2       | SINT-PIETERS-WOLUWE | 56.3                    | 55.1                    | 1.2                   |
| NMT12-1       | DUISBURG            | 50.5                    | 50.3                    | 0.2                   |
| NMT13-1       | GRIMBERGEN          | 49.5                    | 50.2                    | -0.7                  |
| NMT14-1       | WEMMEL              | 51.4                    | 52.0                    | -0.6                  |
| NMT15-3       | ZAVENTEM            | 53.1                    | 59.6                    | -6.5                  |
| NMT16-2       | VELTEM              | 61.0                    | 60.3                    | 0.7                   |
| NMT19-3       | VILVOORDE           | 57.2                    | 57.0                    | 0.2                   |
| NMT20-2       | MACHELEN            | 57.9                    | 58.3                    | -0.4                  |
| NMT21-1       | STROMBEEK-BEVER     | 55.9                    | 55.2                    | 0.7                   |
| NMT23-1       | STEENOKKERZEEL      | 70.9                    | 73.1                    | -2.2                  |
| NMT24-1       | KRAAINEM            | 58.0                    | 56.4                    | 1.6                   |
| NMT26-2       | BRUSSEL             | 53.1                    | 52.6                    | 0.5                   |
| NMT40-1*      | KONINGSLO           | 56.8                    | 56.5                    | 0.3                   |
| NMT41-1*      | GRIMBERGEN          | 51.2                    | 52.3                    | -1.1                  |
| NMT42-2*      | DIEGEM              | 67.4                    | 68.5                    | -1.1                  |
| NMT43-2*      | ERPS-KWERPS         | 59.4                    | 60.5                    | -1.1                  |
| NMT44-2*      | TERVUREN            | 50.5                    | 51.1                    | -0.6                  |
| NMT45-1*      | MEISE               | 48.2                    | 49.6                    | -1.4                  |
| NMT46-2*      | WEZEMBEEK-OPPEM     | 58.7                    | 57.9                    | 0.8                   |
| NMT47-3*      | WEZEMBEEK-OPPEM     | 54.4                    | 53.7                    | 0.7                   |
| NMT48-3*      | BERTEM              | 31.6                    | 35.3                    | -3.7                  |

<sup>\*</sup> LNE noise data off-line correlated by the NMS

#### 4.3 Noise contours

The results of the noise contour calculations for the parameters described above ( $L_{day}$ ,  $L_{evening}$ ,  $L_{night}$ ,  $L_{den}$ , freq.70, and freq.60) are presented in appendix 5.3 and appendix 5.4.

The surface and the number of residents is calculated for each noise contour. On the basis of  $L_{\text{den}}$  contours, the number of potentially severely inconvenienced is calculated according to the methods described in chapter 2.2. The results are available per municipality in appendix 5.3. The contours of 2015 and 2016 are compared in appendix 5.4 . Appendix 5.5 contains the evolution of the surface area and the number of residents per contour zone.

#### 4.3.1 L<sub>day</sub> contours

The  $L_{day}$  contours represent the A-weighted equivalent sound pressure level for the period 07:00 to 19:00 and are reported from 55 dB(A) to 75 dB(A) in steps of 5 dB(A). The evolution of the contours for and 2016 is shown in Figure 7.

The evaluation period for the  $L_{day}$  contours falls entirely within the operational daytime period (06:00 to 23:00) as specified at Brussels Airport. This means that the 'Departure 25R – Landing 25L/25R' runway usage is to be preferred at all times, except at the weekend on Saturdays after 16:00 and on Sundays before 16:00 when departures are distributed over 25R and 19. When this preferential runway usage cannot be applied due to weather conditions (north-eastern wind), then the combination of departures from 07R/07L and landings on 1 is generally applied.

A shift of all contours is visible to the east of Brussels Airport. Through the normal availability of runway 25L in 2016, the noise contour is again in the situation for 2015.

To the west of Brussels Airport, modifications are hardly visible in the contours that are consistent with levels about 60 dB(A). The shape of the contour 55 dB(A) contour changes slightly about the Brussels-Capital Region.

The number of flights that take off from runway 25R and continue straight ahead has dropped significantly compared to 2014 as a result of the moratorium imposed on 2 April 2015. The moratorium of 2 April 2015 also imposed other take-off procedures for departures from runway 25R with a turn to the left (see

Figure 6). The standard procedure (SID) now has a shorter curve for these departures. This situation is now general throughout the whole year of 2016.

The share of the departures from runway 25R rises from 73.4% to 81.1%. Because of this, despite the decrease in the number of departures on an annual basis, the number of departures from runway 25R increased slightly (from 58,908 in 2015 to 60,030 in 2016). On the routes straight ahead there is a slight decline (from 6.7% to 6.3%). The relative share of the flights that make a curve to the right or left increases. The 55 dB contour remains, with the left curve, identical to that in 2015.

Runway 25R Left curve before 02/04/2015

Runway 25R Left curve after 02/04/2015

Rok 3C

Regra Bub

Sopok 7C

PITES 6C

ROUSY 6C

Figure 6: Changes in departure routes for the left curve from runway 25R from 02/04/2015 (source: AIP).

The most remarkable change to the south of Brussels Airport is the strong decrease in the 55 dB(A) contour in an easterly direction. This is a direct consequence of the decrease in the departures from runway 19 (1,243 departures in 2016 compared to 9,180 in 2015). This is lower than the number of departures in 2014 (1,990), the consequence of the renovation of runway 01/19. The contours at this location are however still defined to a great extent by the landings on runway 01 but also those movements have declined slightly in 2016 (from 9,899 in 2015 to 9,348 in 2016).

To the north of Brussels Airport, a similar shrinkage if visible. There are virtually no departures from runway 01 (54 in 2016 instead of 2.177 in 2015) and the number of landings on runway 19 has declined slightly (from 1,497 in 2015 to 1,219 in 2016).

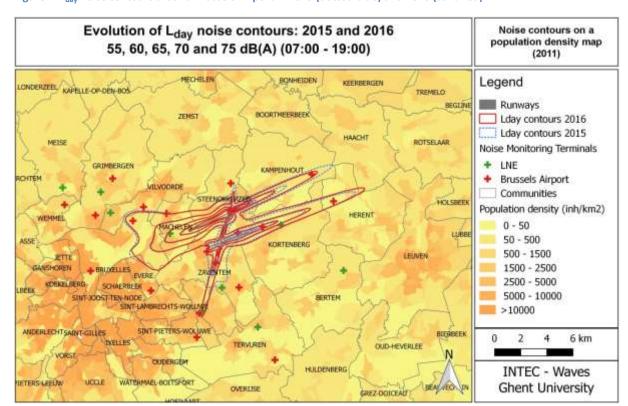



Figure 7: L<sub>dav</sub> noise contours around Brussels Airport in 2015 (dotted blue) and 2016 (solid red).

The total surface area inside the  $L_{day}$  contour of 55 dB(A) declined in 2016 by about 8.0% compared to 2015 (from 5,135 to 4,723 ha). The number of residents inside the  $L_{den}$  contour of the 55 dB(A) noise contour dropped by 11.4% (from 35,056 to 31,057).

#### 4.3.2 Levening contours

The  $L_{\text{evening}}$  contours represent the A-weighted equivalent sound pressure level for the period 19:00 to 23:00 and are reported from 50 dB(A) to 75 dB(A) in steps of 5 dB(A). The evolution of the contours for 2015 and 2016 is shown in Figure 8. An additional contour is reported and this creates a visually enlarged effect. The 50 dB(A) contour has become equally significant for the calculation of the  $L_{\text{den}}$  as the  $L_{\text{day}}$  contour of 55dB(A) due to the 5 dB(A) correction.

The evaluation period for the  $L_{\text{evening}}$  contours falls entirely within the operational daytime period (06:00 to 23:00) as specified at Brussels Airport. The average traffic congestion during the evening period on Brussels Airport is highly comparable to the day period. The average number of flights per hour in 2016 is 34.6 during the day period compared to 33.8 during the evening period. During the evening period, the airport had an average in 2016 of 17.4 departures per hour, slightly fewer than the 17.6 in 2015. There were 17.2 arrivals per hour in 2016, 3.7% fewer than the 17.9 per hour in 2015. Runway usage is similar to the daytime period.

The location of the contours  $L_{\text{evening}} > 55 \text{ dB(A)}$  has changed more compared to 2015 than the location of the contours  $L_{\text{day}} > 55 \text{ dB(A)}$ , but major changes can be seen largely on the 50 dB(A) contour. Through the shift of a portion of the departures from runway 19 to runway 25R, the contours for departures with a turn to the left from 25R have also become larger. There is also an enlargement of

the noise contour in the area extending from runway 25R. That is not a consequence of an absolute increase in the number of flights (minimal decline from 1238 to 1126 flights), but is caused by a change in the noise emissions of the aircraft on this route. This route is used by the Boeing 747. In 2016 this is a very slight increase in the number of flights with this type of aircraft on this route, but the share of the more modern 800 version of this aircraft is smaller in 2016 than in 2015. There are no significant changes for the noise contours to the north west.

To the east of Brussels Airport, a reduction of the landing contour on runway 25R can be seen. This is the effect of the normal availability of runway 25L.

To the south of Brussels Airport, the bulge of the 55 dB(A) contour to the east disappears through the large number of departures from runway 19 (from 2,420 in 2015 to 492 in 2016). The number of landings on runway 01 dropped from 3,808 to 3,294. This strongly depends on the percentage of alternative runway usage, but is also influenced by the renovation of runway 01/19.

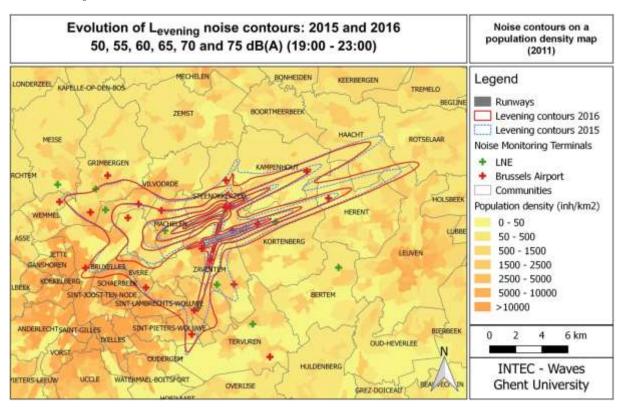



Figure 8: Levening noise contours around Brussels Airport in 2015 (dotted blue) and 2016 (solid red).

The total surface area inside the  $L_{evening}$  contour of 50 dB(A) rose in 2016 by about 2.6% compared to 2015 (from 13,147 to 13,488 ha). The number of residents inside the  $L_{evening}$  contour of 50 dB(A) dropped by 21.5% (from 202,444 to 245,949). The expansion of the  $L_{evening}$  contour occurs in the more densely populated zones, the shrinkage of the contours in less densely population zones.

#### 4.3.3 L<sub>night</sub> contours

The  $L_{night}$  contours represent the A-weighted equivalent sound pressure level for the period 23:00 to 07:00 and are reported from 45 dB(A) to 70 dB(A) in steps of 5 dB(A). The evolution of the contours

from 2015 to 2016 is shown in Figure 9. Since an additional contour is reported, this creates a visually enlarging effect between the day and the evening. As a result of the 10 dB(A) correction, the 45 dB(A) night contour is larger than the 55 dB(A) contour for daytime and is now equally significant for the calculation of  $L_{\text{den}}$  as the  $L_{\text{day}}$  contour of 55 dB(A) and the  $L_{\text{evening}}$  contour of 50 dB(A).

The evaluation period for the  $L_{night}$  contours does not coincide with the operational night period (23:00 to 06:00) and also comprises the flights of the operational daytime period between 06:00 and 07:00. The noise contours are a combination of the runway and route usage during the operational night and during the operational day.

The noise contours to the east of Brussels Airport reflect the changes resulting from the use of arrivals on 25L and 25R which can also be seen during the day and the evening.

To the south of Brussels Airport, the surface area of all contours decline through the lower use of runway 19 for take-off (from 2,845 departures in 2015 to 1,408 departures in 2016). The number of landings on runway 01 also dropped from 1,399 to 1,126. These departing flights shift to runway 25R and cause an expansion of the contours in all directions (left turn, straight ahead and right turn).

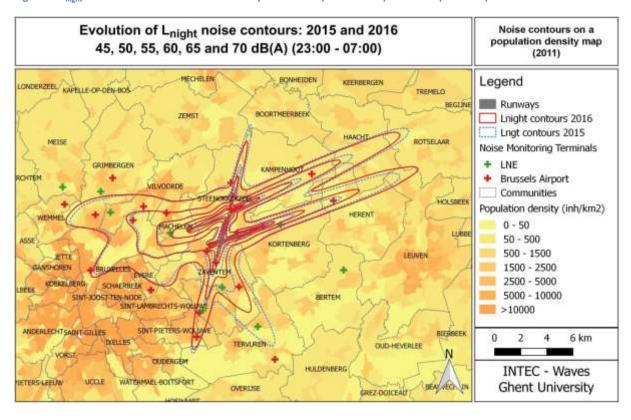



Figure 9: L<sub>night</sub> noise contours around Brussels Airport in 2015 (dotted blue) and 2016 (solid red).

The busy departure hour from 06:00 and 07:00 contributes the most to the  $L_{night}$  contours. In 2016, 60.1% of the departures during the night hours took place between 06:00 and 07:00, slightly fewer than the 63.8% in 2015.

The total surface area inside the  $L_{night}$  contour of 45 dB(A) declined in 2016 by about 5.0% compared to 2015 (from 13,413 to 12,748 ha). The number of residents inside the  $L_{night}$  contour of 45 dB(A) only dropped by 0.2% (from 161,524 to 161,216).

#### 4.3.4 L<sub>den</sub> contours

The  $L_{den}$  unit is a combination of  $L_{day}$ ,  $L_{evening}$  and  $L_{night}$ . The evening movements are penalised with 5 dB(A), the night movements with 10 dB(A). In Figure 10 you can see the evolution of the  $L_{den}$  contours for 2015 and 2016. The  $L_{den}$  contours are reported from 55 dB(A) to 75 dB(A) in steps of 5 dB(A).

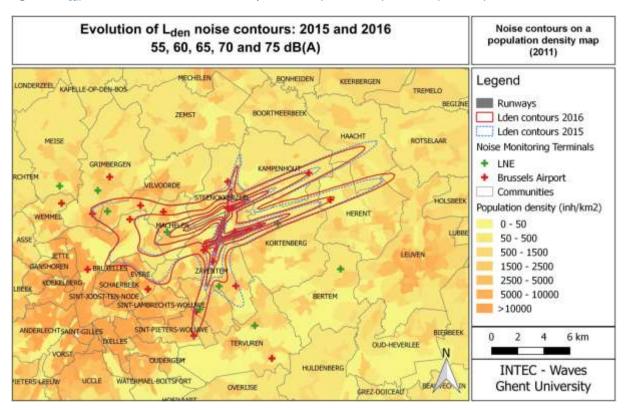



Figure 10: L<sub>den</sub> noise contours around Brussels Airport in 2015 (dotted blue) and 2016 (solid red).

The changed form is a weighted combination of all effects which clarified in detail in the discussion of  $L_{day}$ ,  $L_{evening}$  and  $L_{night}$  contours. The contour is comparable with 2015 with the exception of the southerly direction where the decline in the departures with a bend to left from runway 19 causes a clear shrinking of the contour. As far as the landing zones to the north-east are concerned, there is the shift of the contour from runway 25R to runway 25L since runway 25L became normally available again in 2016.

The total surface area inside the  $L_{den}$  contour of 55 dB(A) declined in 2016 by about 2.8% compared to 2015 (from 9,236 to 8,974 ha). The number of residents inside the  $L_{den}$  contour of 55 dB(A) rose by 3.8% (from 96,075 to 99,680).

## 4.3.5 Freq.70,day contours (day 07:00 - 23:00)

The Freq.70,day contours are calculated for an evaluation period that consists of the evaluation periods of  $L_{day}$  and  $L_{evening}$  together. The evolution of the Freq.70,day contours reflects the changes in the runway usage and the changes to the routes (see Figure 11).

The changed shape to the south is caused by a strong reduction in the number of departures from runway 19. This change is compensated to a slight degree by the contribution of flights that take the shorter turn to left from runway 25R. The contours to the west - in particular the 5x and 10x contour - shrink slightly.

To the east, the shift from runway 25R to 25L is clearly but the differences are less pronounced in the number of events than in the  $L_{\text{day}}$  or  $L_{\text{evening}}$  noise contours.

To the north of runway 01/19, a zone arises where departures from runway 07L and 07R cross with the landings on runway 19, and this results in the 5x contour being exceeded.

The total surface area inside the contour of 5x above 70 dB(A) declined in 2016 by about 26.3% compared to 2015 (from 18,314 to 13,491 ha). This means the total surface area is now below the situation in 2014 (15,372 ha). The number of residents inside the Freq.70,day contour of 5 events dropped sharply by 27.2% (from 334,264 to 243,235).

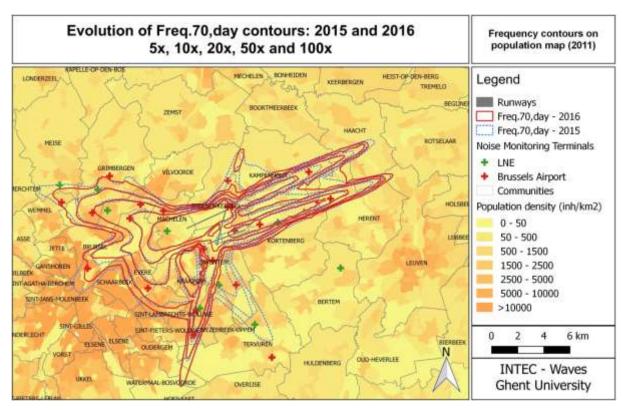



Figure 11: Freq.70,day frequency contours around Brussels Airport for 2015 and 2016.

#### 4.3.6 Freq.70, night contours (night 23:00-07:00)

The Freq.70,night contours are calculated for the same evaluation period as the  $L_{\text{night}}$ . The evolution of the Freq.70,night contours reflects the changes in the runway usage and the changes that are discussed for  $L_{\text{night}}$ .

The total surface area inside the 1x above the 70 dB(A) contour during the night declined in 2016 by 1.4% compared to 2015 (from 13,885 to 13,690 ha). The number of residents inside this contour rose by 5.5% (from 210,939 to 222,622).

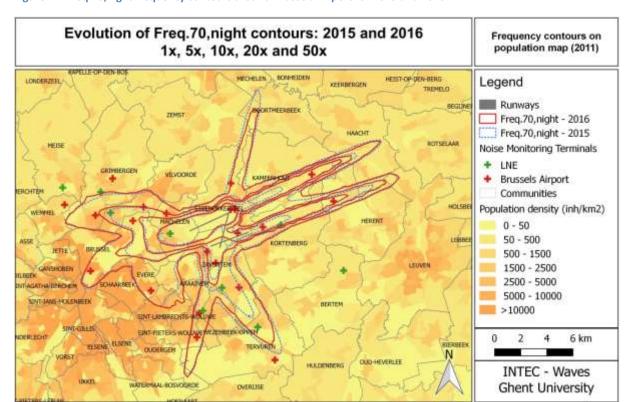



Figure 12: Freq.70, night frequency contours around Brussels Airport for 2015 and 2016.

#### 4.3.7 Freq.60,day contours (day 07:00-23:00)

The Freq.60,day contours are calculated for an evaluation period that consists of the evaluation periods of  $L_{day}$  and  $L_{evening}$  together. The 50x freq.60, day contour shows no bulge above Brussels because there are no 50 flights per day that fly straight ahead. The evolution of the Freq.60,day contours reflects the changes in the runway usage and the changes that have been discussed the 50x contour shifts to the south of the airport because that contour is now more strongly determined by the departures from 25R with a turn to the left.

The total surface area inside the Freq.60,day contour of 50x above 60 dB(A) decreased in 2016 by about 2.7% compared to 2015 (from 16,203 to 15,760 ha). The number of residents inside the Freq.60,day contour of 50 times above the 60 dB(A) dropped by 2.0% (from 243,774 to 238,939).

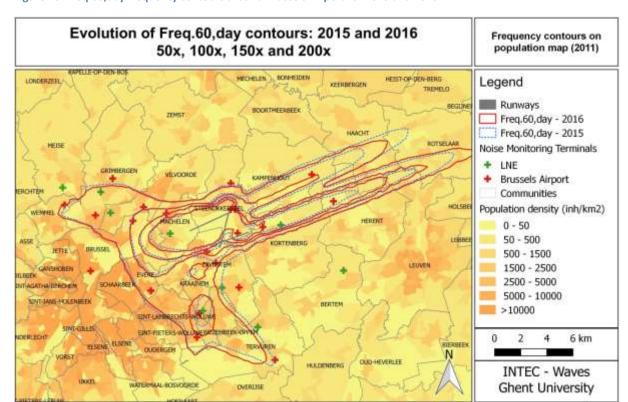



Figure 13: Freq.60,day frequency contours around Brussels Airport for 2015 and 2016.

#### 4.3.8 Freq.60, night - contours (night 23:00-07:00)

The Freq.60,night contours are calculated for the same evaluation period as the  $L_{\text{night}}$ . The evolution of the Freq.60,night contours reflects the changes in the runway and route usage. The departures from runway 19 have been greatly reduced and this has resulted in an outermost contour to the south of the airport shrinking strongly. Only a small additional zone with 10x above 60 dB(A) is visible as a result of the combination of flights from runway 25R that use the short left curve and the landings on runway 01.

The total surface area inside the Freq.60,night frequency contour with 10x above 60 dB(A) rose in 2016 by about 0.7% compared to 2015 (from 11,964 to 12,052 ha). The number of residents inside the Freq.60,night contour of 10x above 60 dB(A) increased by 0.4% (from 131,736 to 132,238).

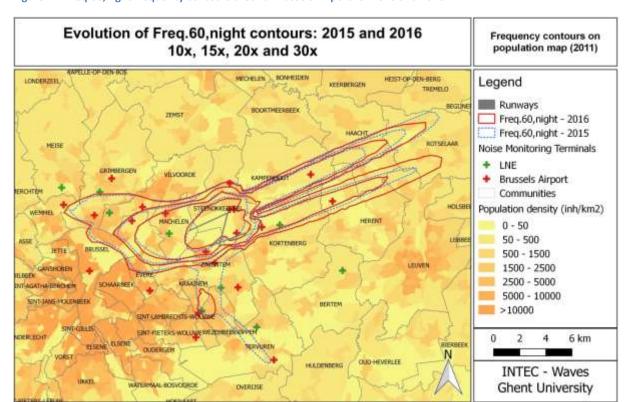
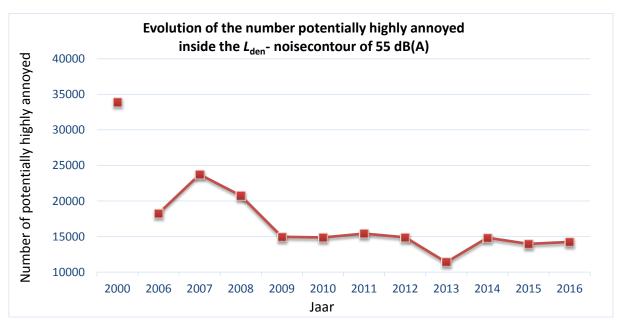



Figure 14: Freq.60, night frequency contours around Brussels Airport for 2015 and 2016.

#### 4.4 Number of people who are potentially highly inconvenienced

The number of people who are potentially seriously inconvenienced is determined on the basis of the calculated  $L_{\text{den}}$  and the exposure effect relationship for serious inconvenience stipulated in VLAREM 2 is included (see 2.2). Number of people who are potentially severely inconvenienced per municipality.

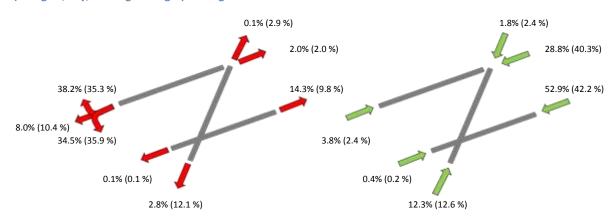
For 2016, the total number of people who are potentially severely inconvenienced living inside the 55 dB(A) contour amounted to 14,226. This is an increase of 1.9% compared to 2015.


This increase is in contrast with the decrease of the number of movements between 2015 and 2016 by 6.5% (Section 4.1.1). Two elements explain the increase. The first element is the shift of a portion of the departures from runway 19 to 25R. In 2015 there were, due to the renovation work to runway 25L, just a few more departures on runway 19 compared to the normal situation without renovation work. Second, in 2016, the reverse situation occurred due to the renovation work on runway 19. This caused a clear reduction of the potential severe inconvenience in Zaventem in 2016 compared to 2015. These departures, however, were shifted to runway 25R. The contours shrink in a less densely populated area and grow slightly in a more densely populated area. This leads to an increased in the potential severe inconvenience in a number of municipalities in the departure zone of runway 25R (Evere, Schaarbeek and Grimbergen).

An overview is given by merged municipality in Table9.

Table9: Evolution of the number of people who are potentially severely inconvenienced inside the  $L_{\text{den}}$  55 dB(A) noise contour.

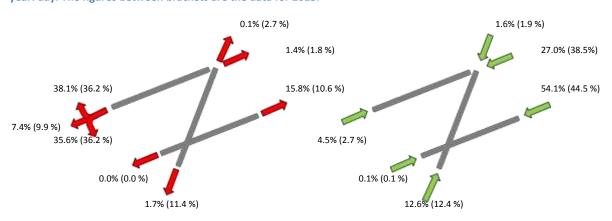
| Year            | 2000           | 2006    | 2007    | 2008         | 2009    | 2010         | 2011         | 2012         | 2013    | 2014       | 2015     | 2016     |
|-----------------|----------------|---------|---------|--------------|---------|--------------|--------------|--------------|---------|------------|----------|----------|
| INM versie      | 7.0b           | 7.0b    | 7.0b    | 7.0b         | 7.0b    | 7.0b         | 7.0b         | 7.0b         | 7.0b    | 7.0b       | 7.0b     | 7.0b     |
| Population data | 7.00           | 1jan'03 | 1jan'06 | 1jan'07      | 1jan'07 | 1jan'08      | 1jan'08      | 1jan'10      | 1jan'10 | 1jan'10    | 1jan'11  | 1jan'11  |
| Brussel         | 2.441          | 1,254   | 1.691   | 1,447        | 1,131   | 1,115        | 1,061        | 1,080        | 928     | 1,780      | 1,739    | 1,789    |
| Evere           | 3.648          | 2,987   | 3,566   | 3,325        | 2,903   | 2,738        | 2,599        | 2,306        | 1,142   | 2,975      | 1,739    | 1,789    |
| Grimbergen      | 3,111          | 479     | 1,305   | 638          | 2,903   | 132          | 193          | 120          | 0       | 175        | 428      | 517      |
| Haacht          | 96             | 103     | 1,303   | 58           | 36      | 31           | 37           | 37           | 24      | 50         | 115      | 70       |
| Herent          | 186            | 88      | 140     | 162          | 119     | 115          | 123          | 134          | 107     | 152        | 111      | 161      |
| Huldenberg      | 112            | 0       | 0       | 0            | 0       | 0            | 0            | 0            | 0       | 0          | 0        | 101      |
| Kampenhout      | 529            | 747     | 727     | 582          | 453     | 483          | 461          | 399          | 430     | 469        | 648      | 566      |
| Kortenberg      | 664            | 548     | 621     | 604          | 512     | 526          | 497          | 422          | 603     | 443        | 366      | 438      |
| Kraainem        | 1,453          | 934     | 1.373   | 1,277        | 673     | 669          | 667          | 500          | 589     | 111        | 368      | 379      |
| Leuven          | 70             | 954     | 1,373   | 22           | 2       | 1            | 3            | 500          | 0       | 111        | 0        | 0        |
| Machelen        | 3,433          | 2.411   | 2,724   | 2.635        | 2,439   | 2.392        |              | 2,573        | 2,278   | 2,505      | 2,598    | 2,649    |
| Meise           | 506            | 2,411   | 2,724   | 2,635        | 2,439   | 2,392        | 2,470<br>0   | 2,573        | 2,278   | 2,505      | 2,598    | 2,649    |
| Overijse        | 70             | 0       | 0       | 0            | 0       | 0            | 0            | 0            | 0       | 0          | 0        | 0        |
| Rotselaar       | 9              | 0       | 0       | 0            | 0       | 0            | 0            | 0            | 0       | 0          | 0        | 0        |
| Schaarbeek      |                | 995     |         |              | 603     |              |              |              |         |            |          | -        |
| Sint-LWoluwe    | 2,026<br>1,515 | 382     | 1,937   | 1,440<br>994 | 489     | 1,153<br>290 | 1,652<br>196 | 1,703<br>150 | 76<br>0 | 1,647<br>0 | 354<br>0 | 956<br>1 |
| Sint-PWoluwe    | ,              |         | 1,218   |              |         |              |              |              |         |            |          |          |
| Steenokkerzeel  | 642<br>1.769   | 411     | 798     | 607          | 396     | 477          | 270          | 1 400        | 390     | 1 420      | 79       | 102      |
| Tervuren        | ,              | 1,530   | 1,584   | 1,471        | 1,327   | 1,351        | 1,360        | 1,409        | 1,455   | 1,439      | 1,675    | 1,525    |
| Vilvoorde       | 1,550          | 1 150   | 1 493   | 1 177        | 0       | 0            | 0            | 0            | 0       | 1.013      | 1 120    | 1 126    |
| Wemmel          | 2,622          | 1,158   | 1,483   | 1,177        | 894     | 812          | 868          | 851          | 302     | 1,012      | 1,120    | 1,136    |
| Wezembeek-O.    | 142            | 720     | 0       | 0            | 0       | 0            | 0            | 0            | 0       | 172        | 0        | 0        |
|                 | 1,818          | 739     | 878     | 670          | 359     | 425          | 408          | 399          | 457     | 172        | 282      | 252      |
| Zaventem        | 5,478          | 3,490   | 3,558   | 3,628        | 2,411   | 2,152        | 2,544        | 2,716        | 2,618   | 1,884      | 2,638    | 1,835    |
| ZEMST           | 0              | 0       | 0       | 0            | 0       | 0            | 0            | 0            | 0       | 0          | 0        | 0        |
| Eindtotaal      | 33,889         | 18,257  | 23,732  | 20,737       | 14,950  | 14,861       | 15,409       | 14,886       | 11,399  | 14,825     | 13,965   | 14,226   |


Figure 15: Evolution of the number of people who are potentially severely inconvenienced inside the  $L_{\text{den}}$  55 dB(A) noise contour.



### 5 Appendices

#### 5.1 Runway and route usage


Table 10: Overview of the number of departures and arrivals annually per runway including changes vs. the previous year (all flights, day, evening and night). The figures between brackets are the data for 2015.



| All flights (day, evening, night) |        |        |       |       |  |  |  |  |  |  |  |
|-----------------------------------|--------|--------|-------|-------|--|--|--|--|--|--|--|
| Departures                        |        |        |       |       |  |  |  |  |  |  |  |
|                                   | Nur    | nber   | Perce | ntage |  |  |  |  |  |  |  |
| Runway                            | 2015   | 2016   | 2015  | 2016  |  |  |  |  |  |  |  |
| 01                                | 3,430  | 69     | 2.9%  | 0.1%  |  |  |  |  |  |  |  |
| 07L                               | 2,439  | 2,244  | 2.0%  | 2.0%  |  |  |  |  |  |  |  |
| 07R                               | 11,724 | 16,039 | 9.8%  | 14.3% |  |  |  |  |  |  |  |
| 19                                | 14,447 | 3,139  | 12.1% | 2.8%  |  |  |  |  |  |  |  |
| 25L                               | 103    | 149    | 0.1%  | 0.1%  |  |  |  |  |  |  |  |
| 25R                               | 87,529 | 90,180 | 73.1% | 80.6% |  |  |  |  |  |  |  |

| All flights (day, evening, night) |                   |        |       |       |  |  |  |  |  |  |
|-----------------------------------|-------------------|--------|-------|-------|--|--|--|--|--|--|
| Landings                          |                   |        |       |       |  |  |  |  |  |  |
|                                   | Number Percentage |        |       |       |  |  |  |  |  |  |
| Runway                            | 2015              | 2016   | 2015  | 2016  |  |  |  |  |  |  |
| 01                                | 15,113            | 13,768 | 12.6% | 12.3% |  |  |  |  |  |  |
| 07L                               | 2,814             | 4,202  | 2.4%  | 3.8%  |  |  |  |  |  |  |
| 07R                               | 220               | 419    | 0.2%  | 0.4%  |  |  |  |  |  |  |
| 19                                | 2,897             | 2,052  | 2.4%  | 1.8%  |  |  |  |  |  |  |
| 25L                               | 50,454            | 59,190 | 42.2% | 52.9% |  |  |  |  |  |  |
| 25R                               | 48,201            | 32,208 | 40.3% | 28.8% |  |  |  |  |  |  |

Table 11: Overview of the number of departures and arrivals annually per runway including changes vs. the previous year: day. The figures between brackets are the data for 2015.



| Flights day |                   |        |       |       |  |  |  |  |  |  |
|-------------|-------------------|--------|-------|-------|--|--|--|--|--|--|
| Departures  |                   |        |       |       |  |  |  |  |  |  |
|             | Number Percentage |        |       |       |  |  |  |  |  |  |
| Runway      | 2015              | 2016   | 2015  | 2016  |  |  |  |  |  |  |
| 01          | 2,177             | 54     | 2.7%  | 0.1%  |  |  |  |  |  |  |
| 07L         | 1,440             | 1,033  | 1.8%  | 1.4%  |  |  |  |  |  |  |
| 07R         | 8,491             | 11,667 | 10.6% | 15.8% |  |  |  |  |  |  |
| 19          | 9,180             | 1,239  | 11.4% | 1.7%  |  |  |  |  |  |  |
| 25L         | 23                | 24     | 0.0%  | 0.0%  |  |  |  |  |  |  |
| 25R         | 58.908            | 60.019 | 73.4% | 81.1% |  |  |  |  |  |  |

| Flights day |                   |        |       |       |  |  |  |  |  |  |
|-------------|-------------------|--------|-------|-------|--|--|--|--|--|--|
| Landings    |                   |        |       |       |  |  |  |  |  |  |
|             | Number Percentage |        |       |       |  |  |  |  |  |  |
| Runway      | 2015              | 2016   | 2015  | 2016  |  |  |  |  |  |  |
| 01          | 9,899             | 9,349  | 12.4% | 12.6% |  |  |  |  |  |  |
| 07L         | 2,168             | 3,370  | 2.7%  | 4.5%  |  |  |  |  |  |  |
| 07R         | 42                | 87     | 0.1%  | 0.1%  |  |  |  |  |  |  |
| 19          | 1,497             | 1,217  | 1.9%  | 1.6%  |  |  |  |  |  |  |
| 25L         | 35,598            | 40,172 | 44.5% | 54.1% |  |  |  |  |  |  |
| 25R         | 30,832            | 19,996 | 38.5% | 27.0% |  |  |  |  |  |  |

Table 12: Overview of the number of departures and arrivals annually per runway including changes vs. the previous year: evening. The figures between brackets are the data for 2015.

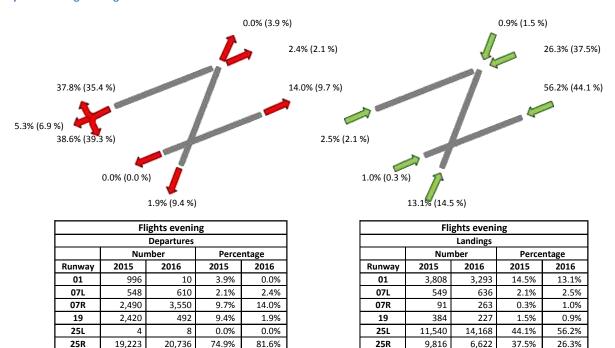
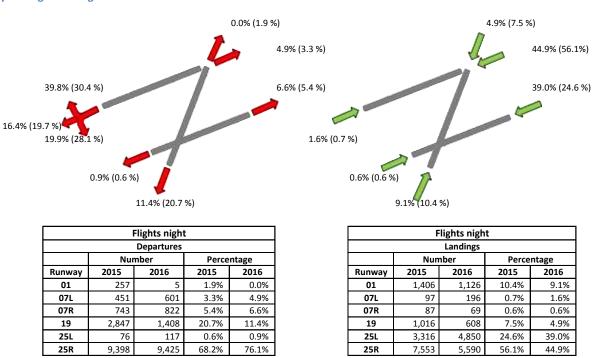



Table 13: Overview of the number of departures and arrivals annually per runway including changes vs. the previous year: night. The figures between brackets are the data for 2015.

25R


9,816

6,622

37.5%

26.3%

81.6%



25R

### 5.2 Location of the measuring stations

Figure 16: Location of the measuring stations.

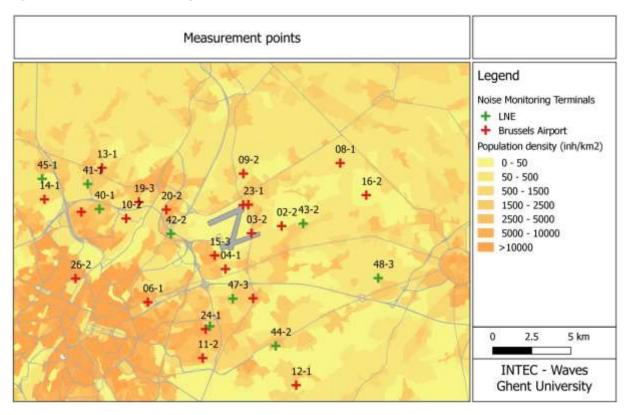



Table 14: Overview of the measuring points.

| Code    | Name                |
|---------|---------------------|
| NMT01-2 | STEENOKKERZEEL      |
| NMT02-2 | KORTENBERG          |
| NMT03-3 | HUMELGEM-Airside    |
| NMT04-1 | NOSSEGEM            |
| NMT06-1 | EVERE               |
| NMT07-1 | STERREBEEK          |
| NMT08-1 | KAMPENHOUT          |
| NMT09-2 | PERK                |
| NMT10-1 | NEDER-OVER-HEEMBEEK |
| NMT11-2 | SINT-PIETERS-WOLUWE |
| NMT12-1 | DUISBURG            |
| NMT13-1 | GRIMBERGEN          |
| NMT14-1 | WEMMEL              |
| NMT15-3 | ZAVENTEM            |
| NMT16-2 | VELTEM              |
| NMT19-3 | VILVOORDE           |

| Code    | Name            |
|---------|-----------------|
| NMT20-2 | MACHELEN        |
| NMT21-1 | STROMBEEK-BEVER |
| NMT23-1 | STEENOKKERZEEL  |
| NMT24-1 | KRAAINEM        |
| NMT26-2 | BRUSSEL         |
| NMT40-1 | KONINGSLO       |
| NMT41-1 | GRIMBERGEN      |
| NMT42-2 | DIEGEM          |
| NMT43-2 | ERPS-KWERPS     |
| NMT44-2 | TERVUREN        |
| NMT45-1 | MEISE           |
| NMT46-2 | WEZEMBEEK-OPPEM |
| NMT47-3 | WEZEMBEEK-OPPEM |
| NMT48-3 | BERTEM          |

#### 5.3 Results of contour calculations - 2016

#### 5.3.1 Surface area per contour zone and per municipality

Table 15: Surface area per  $L_{day}$  contour zone and municipality – 2016.

| Area (ha)      | L <sub>day</sub> contour zone in dB(A) (day 07:00-19:00) |       |       |       |     |       |  |  |  |
|----------------|----------------------------------------------------------|-------|-------|-------|-----|-------|--|--|--|
| Municipality   | 55-60                                                    | 60-65 | 65-70 | 70-75 | >75 | Total |  |  |  |
| Brussel        | 635                                                      | 115   | 0     | -     | -   | 750   |  |  |  |
| Evere          | 47                                                       | -     | -     | -     | -   | 47    |  |  |  |
| Haacht         | 14                                                       | -     | -     | -     | -   | 14    |  |  |  |
| Herent         | 217                                                      | -     | -     | -     | -   | 217   |  |  |  |
| Kampenhout     | 344                                                      | 56    | -     | -     | -   | 400   |  |  |  |
| Kortenberg     | 408                                                      | 193   | 42    | -     | -   | 643   |  |  |  |
| Kraainem       | 44                                                       | -     | -     | -     | -   | 44    |  |  |  |
| Machelen       | 319                                                      | 279   | 191   | 53    | 9   | 851   |  |  |  |
| Steenokkerzeel | 441                                                      | 313   | 235   | 70    | 72  | 1,131 |  |  |  |
| Vilvoorde      | 39                                                       | -     | -     | -     | -   | 39    |  |  |  |
| Wezembeek-O.   | 29                                                       | -     | -     | -     | -   | 29    |  |  |  |
| Zaventem       | 351                                                      | 130   | 78    | -     | -   | 559   |  |  |  |
| Totaal         | 2,886                                                    | 1,087 | 545   | 123   | 82  | 4,723 |  |  |  |

Table 16: Surface area per  $L_{\text{evening}}$  contour zone and municipality – 2016.

| Area (ha)              |       | L <sub>evening</sub> co | ntour zone | in dB(A) (ev | ening 19:00 | 0-23:00) |        |
|------------------------|-------|-------------------------|------------|--------------|-------------|----------|--------|
| Municipality           | 50-55 | 55-60                   | 60-65      | 65-70        | 70-75       | >75      | Total  |
| Brussel                | 515   | 690                     | 203        | 6            | -           | -        | 1,413  |
| Evere                  | 360   | 137                     | -          | -            | -           | -        | 497    |
| Grimbergen             | 819   | -                       | -          | -            | -           | -        | 819    |
| Haacht                 | 514   | -                       | -          | -            | -           | -        | 514    |
| Herent                 | 755   | 169                     | -          | -            | -           | -        | 924    |
| Kampenhout             | 1,109 | 345                     | 60         | -            | -           | -        | 1,514  |
| Kortenberg             | 434   | 390                     | 164        | 34           | -           | -        | 1,022  |
| Kraainem               | 445   | 41                      | -          | -            | -           | -        | 486    |
| Machelen               | 216   | 331                     | 268        | 198          | 63          | 15       | 1,093  |
| Meise                  | 8     | -                       | -          | -            | -           | -        | 8      |
| Rotselaar              | 54    | -                       | -          | -            | -           | -        | 54     |
| Schaarbeek             | 212   | 14                      | -          | -            | -           | -        | 226    |
| Sint-Lambrechts-Woluwe | 391   | -                       | -          | -            | -           | -        | 391    |
| Sint-PWoluwe           | 254   | -                       | -          | -            | -           | -        | 254    |
| Steenokkerzeel         | 410   | 469                     | 318        | 228          | 71          | 76       | 1,572  |
| Tervuren               | 22    | -                       | -          | -            | -           | -        | 22     |
| Vilvoorde              | 497   | 193                     | -          | -            | -           | -        | 689    |
| Wemmel                 | 28    | -                       | -          | -            | -           | -        | 28     |
| Wezembeek-O.           | 257   | 24                      | -          | -            | -           | -        | 281    |
| Zaventem               | 1,103 | 385                     | 124        | 70           | -           | -        | 1,682  |
| Total                  | 8,402 | 3,188                   | 1,137      | 536          | 135         | 91       | 13,488 |

Table 17: Surface area per  $L_{\text{night}}$  contour zone and municipality – 2016.

| Area (ha)              |       | L <sub>night</sub> co | ntour zone | in dB(A) (n | ight 23:00-0 | 7:00) |        |
|------------------------|-------|-----------------------|------------|-------------|--------------|-------|--------|
| Municipality           | 45-50 | 50-55                 | 55-60      | 60-65       | 65-70        | >70   | Total  |
| Brussel                | 881   | 567                   | 45         | -           | -            | -     | 1,494  |
| Evere                  | 306   | 0                     | -          | -           | -            | -     | 306    |
| Grimbergen             | 683   | -                     | -          | -           | -            | -     | 683    |
| Haacht                 | 764   | 19                    | -          | -           | -            | -     | 783    |
| Herent                 | 751   | 184                   | -          | -           | -            | -     | 935    |
| Kampenhout             | 979   | 466                   | 128        | 12          | -            | -     | 1,585  |
| Kortenberg             | 443   | 333                   | 134        | 27          | 1            | -     | 938    |
| Kraainem               | 189   | 19                    | -          | -           | -            | -     | 208    |
| Machelen               | 272   | 349                   | 307        | 141         | 33           | 10    | 1,111  |
| Rotselaar              | 90    | -                     | -          | -           | -            | -     | 90     |
| Schaarbeek             | 72    | -                     | -          | -           | -            | -     | 72     |
| Sint-Lambrechts-Woluwe | 4     | -                     | -          | -           | -            | -     | 4      |
| Sint-PWoluwe           | 104   | -                     | -          | -           | -            | -     | 104    |
| Steenokkerzeel         | 494   | 474                   | 309        | 207         | 134          | 88    | 1,708  |
| Tervuren               | 3     | -                     | -          | -           | -            | -     | 3      |
| Vilvoorde              | 606   | 43                    | -          | -           | -            | -     | 649    |
| Wezembeek-O.           | 154   | 5                     | -          | -           | -            | -     | 158    |
| Zaventem               | 1,169 | 469                   | 189        | 54          | 19           | 11    | 1,912  |
| Zemst                  | 5     | -                     | -          | -           | -            | -     | 5      |
| Total                  | 7,969 | 2,930                 | 1,111      | 441         | 188          | 109   | 12,748 |

Table 18: Surface area per  $L_{\text{den}}$  contour zone and municipality – 2016.

| Area (ha)              |       | L <sub>den</sub> contour zone in dB(A) |       |       |     |       |  |  |  |
|------------------------|-------|----------------------------------------|-------|-------|-----|-------|--|--|--|
| Municipality           | 55-60 | 60-65                                  | 65-70 | 70-75 | >75 | Total |  |  |  |
| Brussel                | 708   | 390                                    | 28    | -     | -   | 1,126 |  |  |  |
| Evere                  | 272   | -                                      | -     | -     | -   | 272   |  |  |  |
| Grimbergen             | 147   | -                                      | -     | -     | -   | 147   |  |  |  |
| Haacht                 | 353   | -                                      | -     | -     | -   | 353   |  |  |  |
| Herent                 | 499   | 46                                     | -     | -     | -   | 544   |  |  |  |
| Kampenhout             | 838   | 253                                    | 44    | -     | -   | 1,135 |  |  |  |
| Kortenberg             | 379   | 313                                    | 89    | 15    | -   | 795   |  |  |  |
| Kraainem               | 166   | -                                      | -     | -     | -   | 166   |  |  |  |
| Machelen               | 291   | 321                                    | 264   | 117   | 30  | 1,023 |  |  |  |
| Schaarbeek             | 52    | -                                      | -     | -     | -   | 52    |  |  |  |
| Sint-Lambrechts-Woluwe | 2     | -                                      | -     | -     | -   | 2     |  |  |  |
| Sint-PWoluwe           | 34    | -                                      | -     | -     | -   | 34    |  |  |  |
| Steenokkerzeel         | 477   | 420                                    | 270   | 163   | 159 | 1,490 |  |  |  |
| Vilvoorde              | 501   | 15                                     | -     | -     | -   | 516   |  |  |  |
| Wezembeek-O.           | 98    | -                                      | -     | -     | -   | 98    |  |  |  |
| Zaventem               | 738   | 328                                    | 101   | 31    | 24  | 1,222 |  |  |  |
| Total                  | 5,554 | 2,085                                  | 797   | 326   | 213 | 8,974 |  |  |  |

Table 19: Surface area per Freq.70,day contour zone and municipality – 2016.

| Area (ha)              | Freq.70,day contour zone (07:00-23:00) |       |       |        |       |        |  |
|------------------------|----------------------------------------|-------|-------|--------|-------|--------|--|
| Municipality           | 5-10                                   | 10-20 | 20-50 | 50-100 | >100  | Total  |  |
| Brussel                | 410                                    | 305   | 377   | 374    | 123   | 1,589  |  |
| Evere                  | 12                                     | 267   | 232   | -      | -     | 512    |  |
| Grimbergen             | 511                                    | 494   | 65    | -      | -     | 1,070  |  |
| Haacht                 | 110                                    | 158   | 133   | -      | -     | 401    |  |
| Herent                 | 325                                    | 137   | 192   | 133    | 8     | 794    |  |
| Kampenhout             | 244                                    | 478   | 548   | 243    | 2     | 1,516  |  |
| Kortenberg             | 166                                    | 147   | 233   | 212    | 348   | 1,107  |  |
| Kraainem               | 129                                    | 162   | 142   | -      | -     | 432    |  |
| Machelen               | 51                                     | 73    | 141   | 183    | 555   | 1,003  |  |
| Meise                  | 57                                     | -     | -     | -      | -     | 57     |  |
| Oudergem               | 58                                     | -     | -     | -      | -     | 58     |  |
| Schaarbeek             | 202                                    | 11    | -     | -      | -     | 213    |  |
| Sint-Lambrechts-Woluwe | 180                                    | 358   | 6     | -      | -     | 544    |  |
| Sint-PWoluwe           | 118                                    | 106   | 30    | -      | -     | 253    |  |
| Steenokkerzeel         | 141                                    | 123   | 248   | 365    | 549   | 1,426  |  |
| Tervuren               | 95                                     | 33    | -     | -      | -     | 128    |  |
| Vilvoorde              | 103                                    | 150   | 383   | 19     | -     | 655    |  |
| WATERMAAL-BOSVOORDE    | 10                                     | -     | -     | -      | -     | 10     |  |
| Wemmel                 | 141                                    | -     | -     | -      | -     | 141    |  |
| Wezembeek-O.           | 60                                     | 50    | 83    | -      | -     | 193    |  |
| Zaventem               | 208                                    | 354   | 559   | 186    | 81    | 1,388  |  |
| Total                  | 3,331                                  | 3,407 | 3,372 | 1,715  | 1,666 | 13,491 |  |

Table 20: Surface area per Freq.70, night contour zone and municipality – 2016.

| Area (ha)              | Freq  | .70,night co | ontour zone | (23:00-07: | 0-07:00) |  |  |  |  |
|------------------------|-------|--------------|-------------|------------|----------|--|--|--|--|
| Municipality           | 1-5   | 5-10         | 10-20       | >20        | Total    |  |  |  |  |
| Boortmeerbeek          | 77    | -            | -           | -          | 77       |  |  |  |  |
| Brussel                | 789   | 532          | 280         | 26         | 1,627    |  |  |  |  |
| Evere                  | 468   | 28           | -           | -          | 497      |  |  |  |  |
| Grimbergen             | 756   | 22           | -           | -          | 778      |  |  |  |  |
| Haacht                 | 281   | 150          | 19          | -          | 450      |  |  |  |  |
| Herent                 | 313   | 211          | 92          | -          | 615      |  |  |  |  |
| Kampenhout             | 811   | 238          | 524         | -          | 1,573    |  |  |  |  |
| Kortenberg             | 351   | 160          | 419         | -          | 929      |  |  |  |  |
| Kraainem               | 257   | -            | -           | -          | 257      |  |  |  |  |
| Machelen               | 188   | 133          | 229         | 453        | 1,003    |  |  |  |  |
| Oudergem               | 23    | -            | -           | -          | 23       |  |  |  |  |
| Schaarbeek             | 98    | -            | -           | -          | 98       |  |  |  |  |
| Sint-Jans-Molenbeek    | 12    | -            | -           | -          | 12       |  |  |  |  |
| Sint-Lambrechts-Woluwe | 268   | -            | -           | -          | 268      |  |  |  |  |
| Sint-PWoluwe           | 183   | -            | -           | -          | 183      |  |  |  |  |
| Steenokkerzeel         | 516   | 210          | 449         | 444        | 1,618    |  |  |  |  |
| Tervuren               | 493   | -            | -           | -          | 493      |  |  |  |  |
| Vilvoorde              | 347   | 317          | 11          | -          | 675      |  |  |  |  |
| Wezembeek-O.           | 255   | -            | -           | -          | 255      |  |  |  |  |
| Zaventem               | 1,552 | 439          | 127         | 75         | 2,194    |  |  |  |  |
| Zemst                  | 66    | -            | -           | -          | 66       |  |  |  |  |
| Total                  | 8,104 | 2,439        | 2,149       | 998        | 13,690   |  |  |  |  |

Table 21: Surface area per Freq.60,day contour zone and municipality – 2016.

| Area (ha)              | Fred   | ı.60,day coı | ntour zone (c | lay 07:00-23: | 00)    |
|------------------------|--------|--------------|---------------|---------------|--------|
| Municipality           | 50-100 | 100-150      | 150-200       | >200          | Total  |
| Brussel                | 392    | 399          | 252           | 131           | 1,175  |
| Evere                  | 386    | 126          | -             | -             | 512    |
| Grimbergen             | 978    | -            | -             | -             | 978    |
| Haacht                 | 673    | 71           | 141           | -             | 886    |
| Herent                 | 501    | 393          | 366           | -             | 1,260  |
| Kampenhout             | 1,126  | 290          | 24            | -             | 1,439  |
| Kortenberg             | 299    | 169          | 619           | 35            | 1,122  |
| Kraainem               | 351    | 232          | -             | -             | 583    |
| Machelen               | 115    | 128          | 193           | 673           | 1,108  |
| Meise                  | 3      | -            | -             | -             | 3      |
| Rotselaar              | 619    | 48           | -             | -             | 666    |
| Schaarbeek             | 66     | -            | -             | -             | 66     |
| Sint-Lambrechts-Woluwe | 509    | 1            | -             | -             | 511    |
| Sint-PWoluwe           | 284    | 93           | -             | -             | 377    |
| Steenokkerzeel         | 275    | 258          | 223           | 831           | 1,587  |
| Tervuren               | 718    | -            | -             | -             | 718    |
| Vilvoorde              | 581    | 58           | -             | -             | 639    |
| Wemmel                 | 70     | -            | -             | -             | 70     |
| Wezembeek-O.           | 444    | 145          | -             | -             | 589    |
| Zaventem               | 865    | 260          | 99            | 246           | 1,470  |
| Total                  | 9,256  | 2,670        | 1,918         | 1,916         | 15,760 |

Table 22: Surface area per Freq.60, night contour zone and municipality – 2016.

| Area (ha)      | Freq  | .60,night co | ontour zone | (23:00-07: | 00)    |
|----------------|-------|--------------|-------------|------------|--------|
| Municipality   | 10-15 | 15-20        | 20-30       | >30        | Total  |
| Brussel        | 372   | 495          | 426         | -          | 1,293  |
| Evere          | 200   | 19           | -           | -          | 219    |
| Grimbergen     | 702   | -            | -           | -          | 702    |
| Haacht         | 492   | 556          | -           | -          | 1,048  |
| Herent         | 771   | 383          | -           | -          | 1,154  |
| Kampenhout     | 393   | 1,026        | 37          | -          | 1,457  |
| Kortenberg     | 299   | 629          | 32          | -          | 960    |
| Kraainem       | 81    | -            | -           | -          | 81     |
| Machelen       | 70    | 120          | 832         | 107        | 1,128  |
| Meise          | 0     | -            | -           | -          | 0      |
| Rotselaar      | 686   | 0            | -           | -          | 686    |
| Steenokkerzeel | 125   | 191          | 505         | 862        | 1,683  |
| Vilvoorde      | 583   | 61           | 4           | -          | 648    |
| Wemmel         | 8     | -            | -           | -          | 8      |
| Wezembeek-O.   | 132   | -            | -           | -          | 132    |
| Zaventem       | 230   | 155          | 216         | 254        | 854    |
| Total          | 5,142 | 3,635        | 2,053       | 1,222      | 12,052 |

#### 5.3.2 Number of residents per contour zone and per municipality

Table 23: Number of residents per  $L_{\text{day}}$  contour zone and municipality – 2016.

| Number of Inhabitants | L <sub>day</sub> contour zone in dB(A) (day 07:00-19:00) |       |       |       |     |        |  |
|-----------------------|----------------------------------------------------------|-------|-------|-------|-----|--------|--|
| Municipality          | 55-60                                                    | 60-65 | 65-70 | 70-75 | >75 | Total  |  |
| Brussel               | 2,783                                                    | 2,203 | 0     | -     | -   | 4,986  |  |
| Evere                 | 1,849                                                    | -     | -     | -     | -   | 1,849  |  |
| Haacht                | 27                                                       | -     | -     | -     | -   | 27     |  |
| Herent                | 536                                                      | -     | -     | -     | -   | 536    |  |
| Kampenhout            | 1,106                                                    | 244   | -     | -     | -   | 1,351  |  |
| Kortenberg            | 1,458                                                    | 356   | 17    | -     | -   | 1,831  |  |
| Kraainem              | 165                                                      | -     | -     | -     | -   | 165    |  |
| Machelen              | 4,188                                                    | 3,601 | 1,845 | 13    | -   | 9,647  |  |
| Steenokkerzeel        | 3,934                                                    | 1,328 | 213   | 16    | -   | 5,491  |  |
| Vilvoorde             | 109                                                      | -     | -     | -     | -   | 109    |  |
| Wezembeek-O.          | 564                                                      | -     | -     | -     | -   | 564    |  |
| Zaventem              | 3,835                                                    | 647   | 19    | -     | -   | 4,501  |  |
| Total                 | 20,554                                                   | 8,380 | 2,094 | 28    | -   | 31,057 |  |

Table 24: Number of residents per  $L_{\text{evening}}$  contour zone and municipality – 2016.

| Number of Inhabitants  | L <sub>evening</sub> contour zone in dB(A) (evening 19:00-23:00) |        |       |       |       |     |         |
|------------------------|------------------------------------------------------------------|--------|-------|-------|-------|-----|---------|
| Municipality           | 50-55                                                            | 55-60  | 60-65 | 65-70 | 70-75 | >75 | Total   |
| Brussel                | 19,356                                                           | 2,494  | 3,588 | 29    | -     | -   | 25,467  |
| Evere                  | 29,023                                                           | 7,538  | -     | -     | -     | -   | 36,561  |
| Grimbergen             | 16,663                                                           | -      | -     | -     | -     | -   | 16,663  |
| Haacht                 | 1,232                                                            | -      | -     | -     | -     | -   | 1,232   |
| Herent                 | 1,744                                                            | 346    | -     | -     | -     | -   | 2,090   |
| Kampenhout             | 4,008                                                            | 1,358  | 267   | -     | -     | -   | 5,633   |
| Kortenberg             | 2,705                                                            | 1,270  | 257   | 14    | -     | -   | 4,246   |
| Kraainem               | 12,602                                                           | 139    | -     | -     | -     | -   | 12,741  |
| Machelen               | 3,180                                                            | 4,312  | 3,065 | 2,522 | 34    | -   | 13,112  |
| Meise                  | 109                                                              | -      | -     | -     | -     | -   | 109     |
| Rotselaar              | 123                                                              | -      | -     | -     | -     | -   | 123     |
| Schaarbeek             | 42,865                                                           | 1,113  | -     | -     | -     | -   | 43,978  |
| Sint-Lambrechts-Woluwe | 19,600                                                           | -      | -     | -     | -     | -   | 19,600  |
| Sint-PWoluwe           | 10,978                                                           | -      | -     | -     | -     | -   | 10,978  |
| Steenokkerzeel         | 3,027                                                            | 4,266  | 1,450 | 229   | 18    | -   | 8,991   |
| Tervuren               | 1                                                                | -      | -     | -     | -     | -   | 1       |
| Vilvoorde              | 13,705                                                           | 1,962  | -     | -     | -     | -   | 15,666  |
| Wemmel                 | 237                                                              | -      | -     | -     | -     | -   | 237     |
| Wezembeek-O.           | 6,350                                                            | 440    | -     | -     | -     | -   | 6,790   |
| Zaventem               | 16,812                                                           | 4,405  | 512   | 2     | -     | -   | 21,731  |
| Total                  | 204,319                                                          | 29,643 | 9,140 | 2,796 | 52    | -   | 245,949 |

Table 25: Number of residents per  $L_{\text{night}}$  contour zone and municipality – 2016.

| Number of Inhabitants  | L <sub>night</sub> contour zone in dB(A) (night 23:00-07:00) |        |       |       |       |     |         |
|------------------------|--------------------------------------------------------------|--------|-------|-------|-------|-----|---------|
| Municipality           | 45-50                                                        | 50-55  | 55-60 | 60-65 | 65-70 | >70 | Total   |
| Brussel                | 25,509                                                       | 4,336  | 383   | -     | -     | -   | 30,228  |
| Evere                  | 18,631                                                       | -      | -     | -     | -     | -   | 18,631  |
| Grimbergen             | 15,746                                                       | -      | -     | -     | -     | -   | 15,746  |
| Haacht                 | 2,455                                                        | 19     | -     | -     | -     | -   | 2,474   |
| Herent                 | 1,758                                                        | 431    | -     | -     | -     | -   | 2,189   |
| Kampenhout             | 3,485                                                        | 1,558  | 420   | 96    | -     | -   | 5,558   |
| Kortenberg             | 2,190                                                        | 1,057  | 177   | 11    | 1     | -   | 3,435   |
| Kraainem               | 4,397                                                        | 43     | -     | -     | -     | -   | 4,440   |
| Machelen               | 3,278                                                        | 5,042  | 4,704 | 325   | 1     | -   | 13,350  |
| Rotselaar              | 148                                                          | -      | -     | -     | -     | -   | 148     |
| Schaarbeek             | 13,085                                                       | -      | -     | -     | -     | -   | 13,085  |
| Sint-Lambrechts-Woluwe | 23                                                           | -      | -     | -     | -     | -   | 23      |
| Sint-PWoluwe           | 3,544                                                        | -      | -     | -     | -     | -   | 3,544   |
| Steenokkerzeel         | 2,790                                                        | 4,521  | 1,675 | 278   | 130   | -   | 9,394   |
| Tervuren               | 0                                                            | -      | -     | -     | -     | -   | 0       |
| Vilvoorde              | 13,355                                                       | 118    | -     | -     | -     | -   | 13,474  |
| Wezembeek-O.           | 2,944                                                        | 67     | -     | -     | -     | -   | 3,011   |
| Zaventem               | 15,594                                                       | 6,285  | 596   | 5     | -     | -   | 22,480  |
| Zemst                  | 6                                                            | -      | -     | -     | -     | -   | 6       |
| Total                  | 128,939                                                      | 23,476 | 7,954 | 715   | 131   | -   | 161,216 |

Table 26: Number of residents per  $L_{\text{den}}$  contour zone and municipality – 2016.

| Number of Inhabitants  | L <sub>den</sub> contour zone in dB(A) |        |       |       |     |        |  |  |
|------------------------|----------------------------------------|--------|-------|-------|-----|--------|--|--|
| Municipality           | 55-60                                  | 60-65  | 65-70 | 70-75 | >75 | Total  |  |  |
| Brussel                | 7,276                                  | 4,151  | 245   | -     | -   | 11,671 |  |  |
| Evere                  | 15,840                                 | -      | -     | -     | -   | 15,840 |  |  |
| Grimbergen             | 5,037                                  | -      | -     | -     | -   | 5,037  |  |  |
| Haacht                 | 615                                    | -      | -     | -     | -   | 615    |  |  |
| Herent                 | 1,245                                  | 17     | -     | -     | -   | 1,263  |  |  |
| Kampenhout             | 2,605                                  | 914    | 202   | -     | -   | 3,721  |  |  |
| Kortenberg             | 2,002                                  | 810    | 68    | 6     | -   | 2,886  |  |  |
| Kraainem               | 3,313                                  | -      | -     | -     | -   | 3,313  |  |  |
| Machelen               | 3,800                                  | 4,290  | 3,838 | 267   | -   | 12,195 |  |  |
| Schaarbeek             | 9,068                                  | -      | -     | -     | -   | 9,068  |  |  |
| Sint-Lambrechts-Woluwe | 14                                     | -      | -     | -     | -   | 14     |  |  |
| Sint-PWoluwe           | 992                                    | -      | -     | -     | -   | 992    |  |  |
| Steenokkerzeel         | 3,803                                  | 3,433  | 794   | 178   | 23  | 8,231  |  |  |
| Vilvoorde              | 9,679                                  | 37     | -     | -     | -   | 9,716  |  |  |
| Wezembeek-O.           | 2,102                                  | -      | -     | -     | -   | 2,102  |  |  |
| Zaventem               | 9,838                                  | 3,042  | 137   | 0     | -   | 13,016 |  |  |
| Total                  | 77,229                                 | 16,694 | 5,284 | 450   | 23  | 99,680 |  |  |

Table 27: Number of residents per Freq.70,day contour zone and municipality – 2016.

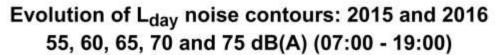
| Number of Inhabitants  | Freq.70,day contour zone (07:00-23:00) |        |        |        |        |         |  |
|------------------------|----------------------------------------|--------|--------|--------|--------|---------|--|
| Municipality           | 5-10                                   | 10-20  | 20-50  | 50-100 | >100   | Total   |  |
| Brussel                | 25,246                                 | 4,632  | 950    | 2,200  | 2,227  | 35,255  |  |
| Evere                  | 1,337                                  | 23,940 | 12,096 | -      | -      | 37,374  |  |
| Grimbergen             | 6,438                                  | 12,206 | 2,004  | -      | -      | 20,648  |  |
| Haacht                 | 467                                    | 265    | 215    | -      | -      | 947     |  |
| Herent                 | 850                                    | 247    | 604    | 175    | 3      | 1,878   |  |
| Kampenhout             | 1,180                                  | 1,643  | 1,632  | 882    | 1      | 5,338   |  |
| Kortenberg             | 984                                    | 1,136  | 1,404  | 898    | 819    | 5,240   |  |
| Kraainem               | 3,881                                  | 5,089  | 2,829  | -      | -      | 11,799  |  |
| Machelen               | 638                                    | 1,412  | 1,613  | 2,687  | 5,542  | 11,893  |  |
| Meise                  | 544                                    | -      | -      | -      | -      | 544     |  |
| Oudergem               | 8                                      | -      | -      | -      | -      | 8       |  |
| Schaarbeek             | 25,505                                 | 604    | -      | -      | -      | 26,109  |  |
| Sint-Lambrechts-Woluwe | 11,633                                 | 19,265 | 33     | -      | -      | 30,931  |  |
| Sint-PWoluwe           | 5,739                                  | 4,296  | 898    | -      | -      | 10,933  |  |
| Steenokkerzeel         | 938                                    | 1,197  | 2,283  | 2,179  | 1,162  | 7,758   |  |
| Tervuren               | 4                                      | 1      | -      | -      | -      | 5       |  |
| Vilvoorde              | 3,565                                  | 3,588  | 7,294  | 49     | -      | 14,496  |  |
| WATERMAAL-BOSVOORDE    | 0                                      | -      | -      | -      | -      | 0       |  |
| Wemmel                 | 1,145                                  | -      | -      | -      | -      | 1,145   |  |
| Wezembeek-O.           | 1,443                                  | 1,169  | 1,779  | -      | -      | 4,390   |  |
| Zaventem               | 3,539                                  | 6,124  | 4,653  | 1,439  | 787    | 16,542  |  |
| Total                  | 95,084                                 | 86,813 | 40,288 | 10,509 | 10,541 | 243,235 |  |

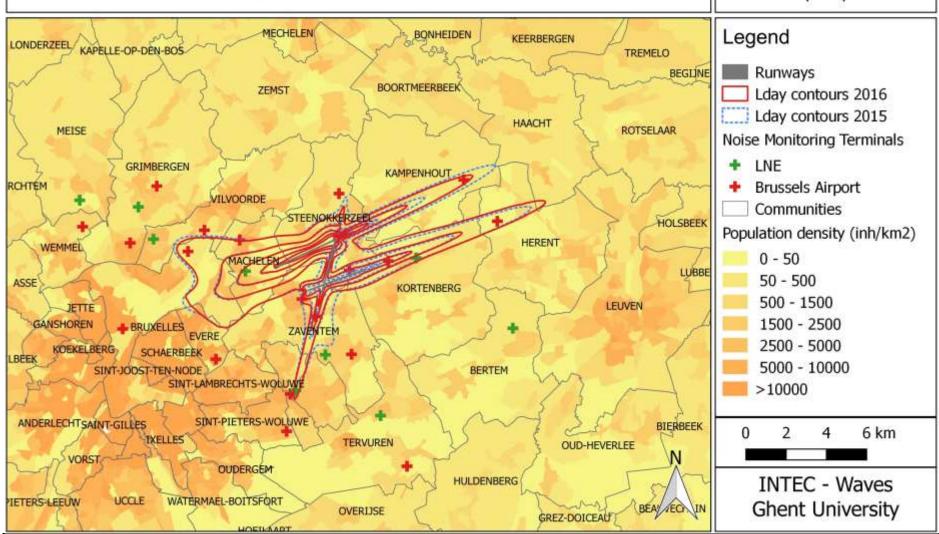
Table 28: Number of residents per Freq.70, night contour zone and municipality – 2016.

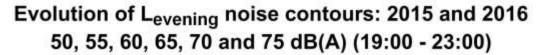
| Aantal Inwoners        | Freq.70,r | nacht - cont | ourzone in d | B(A) (23:00 | )-07:00) |  |  |  |
|------------------------|-----------|--------------|--------------|-------------|----------|--|--|--|
| Gemeente               | 1-5       | 5-10         | 10-20        | >20         | Totaal   |  |  |  |
| Boortmeerbeek          | 359       | -            | -            | -           | 359      |  |  |  |
| Brussel                | 33,791    | 1,211        | 3,850        | 131         | 38,982   |  |  |  |
| Evere                  | 34,823    | 663          | -            | -           | 35,486   |  |  |  |
| Grimbergen             | 16,236    | 977          | -            | -           | 17,212   |  |  |  |
| Haacht                 | 866       | 238          | 19           | -           | 1,122    |  |  |  |
| Herent                 | 651       | 715          | 53           | -           | 1,420    |  |  |  |
| Kampenhout             | 2,823     | 961          | 1,771        | -           | 5,554    |  |  |  |
| Kortenberg             | 2,353     | 874          | 973          | -           | 4,199    |  |  |  |
| Kraainem               | 6,106     | -            | -            | -           | 6,106    |  |  |  |
| Machelen               | 2,646     | 1,828        | 3,260        | 4,227       | 11,961   |  |  |  |
| Oudergem               | 3         | -            | -            | -           | 3        |  |  |  |
| Schaarbeek             | 17,180    | -            | -            | -           | 17,180   |  |  |  |
| Sint-Jans-Molenbeek    | 2,519     | -            | -            | -           | 2,519    |  |  |  |
| Sint-Lambrechts-Woluwe | 15,641    | -            | -            | -           | 15,641   |  |  |  |
| Sint-PWoluwe           | 6,531     | -            | -            | -           | 6,531    |  |  |  |
| Steenokkerzeel         | 3,626     | 1,614        | 2,510        | 1,204       | 8,955    |  |  |  |
| Tervuren               | 3,535     | -            | -            | -           | 3,535    |  |  |  |
| Vilvoorde              | 9,271     | 6,130        | 28           | -           | 15,429   |  |  |  |
| Wezembeek-O.           | 5,061     | -            | -            | -           | 5,061    |  |  |  |
| Zaventem               | 19,670    | 3,405        | 1,615        | 589         | 25,280   |  |  |  |
| Zemst                  | 87        | -            | -            | -           | 87       |  |  |  |
| Totaal                 | 183,776   | 18,616       | 14,079       | 6,151       | 222,622  |  |  |  |

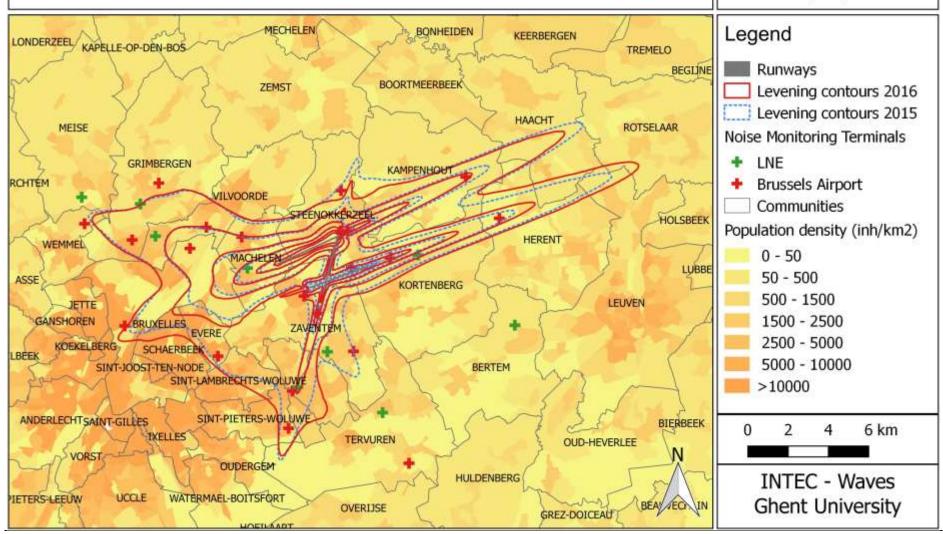
Table 29: Number of residents per Freq.60,day contour zone and municipality – 2016.

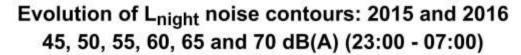
| Number of Inhabitants  | Fr      | eq.60,day co | ontour zone ( | 07:00-23:00 | )       |
|------------------------|---------|--------------|---------------|-------------|---------|
| Municipality           | 50-100  | 100-150      | 150-200       | >200        | Total   |
| Brussel                | 17,807  | 1,000        | 1,580         | 2,675       | 23,062  |
| Evere                  | 30,887  | 6,486        | -             | -           | 37,374  |
| Grimbergen             | 17,824  | -            | -             | -           | 17,824  |
| Haacht                 | 2,403   | 176          | 263           | -           | 2,842   |
| Herent                 | 1,591   | 884          | 935           | -           | 3,411   |
| Kampenhout             | 4,243   | 562          | 10            | -           | 4,815   |
| Kortenberg             | 1,367   | 699          | 2,452         | 19          | 4,537   |
| Kraainem               | 7,028   | 6,504        | -             | -           | 13,532  |
| Machelen               | 1,547   | 1,611        | 2,485         | 7,704       | 13,347  |
| Meise                  | 45      | -            | -             | -           | 45      |
| Rotselaar              | 4,155   | 71           | -             | -           | 4,226   |
| Schaarbeek             | 7,945   | -            | -             | -           | 7,945   |
| Sint-Lambrechts-Woluwe | 26,377  | 23           | -             | -           | 26,401  |
| Sint-PWoluwe           | 10,895  | 4,940        | -             | -           | 15,835  |
| Steenokkerzeel         | 1,993   | 1,857        | 1,479         | 3,782       | 9,111   |
| Tervuren               | 8,512   | -            | -             | -           | 8,512   |
| Vilvoorde              | 13,301  | 149          | -             | -           | 13,451  |
| Wemmel                 | 415     | -            | -             | -           | 415     |
| Wezembeek-O.           | 8,472   | 3,745        | -             | -           | 12,217  |
| Zaventem               | 13,032  | 2,420        | 1,270         | 3,315       | 20,037  |
| Total                  | 179,841 | 31,127       | 10,476        | 17,495      | 238,939 |

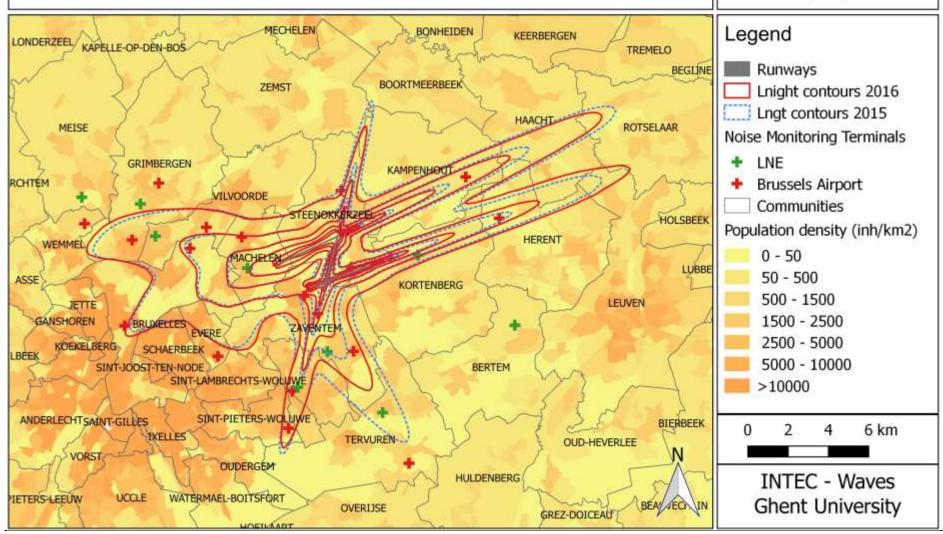

Table 30: Number of residents per Freq.60, night contour zone and municipality – 2016.

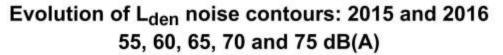

| Number of Inhabitants | Freq   | .60,night co | ontour zone | (23:00-07: | 00)     |
|-----------------------|--------|--------------|-------------|------------|---------|
| Municipality          | 10-15  | 15-20        | 20-30       | >30        | Total   |
| Brussel               | 20,725 | 6,491        | 4,234       | -          | 31,450  |
| Evere                 | 15,148 | 1,004        | -           | -          | 16,153  |
| Grimbergen            | 15,089 | -            | -           | -          | 15,089  |
| Haacht                | 2,050  | 1,505        | -           | -          | 3,555   |
| Herent                | 2,261  | 876          | -           | -          | 3,137   |
| Kampenhout            | 1,442  | 3,509        | 255         | -          | 5,206   |
| Kortenberg            | 1,539  | 2,149        | 15          | -          | 3,703   |
| Kraainem              | 699    | -            | -           | -          | 699     |
| Machelen              | 694    | 1,513        | 11,153      | 102        | 13,463  |
| Meise                 | 0      | -            | -           | -          | 0       |
| Rotselaar             | 2,891  | 0            | -           | -          | 2,891   |
| Steenokkerzeel        | 956    | 1,139        | 2,367       | 5,360      | 9,823   |
| Vilvoorde             | 12,220 | 172          | 9           | -          | 12,401  |
| Wemmel                | 58     | -            | -           | -          | 58      |
| Wezembeek-O.          | 3,301  | -            | -           | -          | 3,301   |
| Zaventem              | 2,160  | 1,997        | 3,835       | 3,316      | 11,308  |
| Total                 | 81,235 | 20,356       | 21,869      | 8,779      | 132,238 |

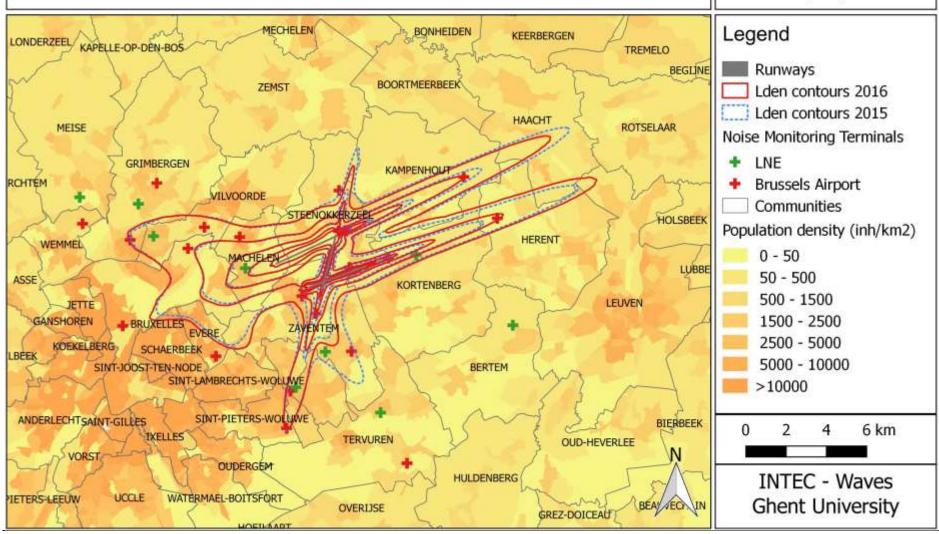

#### 5.4 Noise contour maps: evolution 2015-2016


This appendix includes noise maps in A4 format.


- L<sub>day</sub> noise contours for 2015 and 2016, background population map 2011
- L<sub>evening</sub> noise contours for 2015 and 2016, background population map 2011
- L<sub>night</sub> noise contours for 2015 and 2016, background population map 2011
- L<sub>den</sub> noise contours for 2015 and 2016, background population map 2011
- Freq.70,day noise contours for 2015 and 2016, background population map 2011
- Freq.70, night noise contours for 2015 and 2016, background population map 2011
- Freq.60,day noise contours for 2015 and 2016, background population map 2011
- Freq.60, night noise contours for 2015 and 2016, background population map 2011
- L<sub>dav</sub> noise contours for 2015 and 2016, background NGI topographical map
- Levening noise contours for 2015 and 2016, background NGI topographical map
- L<sub>night</sub> noise contours for 2015 and 2016, background NGI topographical map
- L<sub>den</sub> noise contours for 2015 and 2016, background NGI topographical map
- Freq.70,day noise contours for 2015 and 2016, background NGI topographical map
- Freq.70, night noise contours for 2015 and 2016, background NGI topographical map
- Freq.60,day noise contours for 2015 and 2016, background NGI topographical map
- Freq.60, night noise contours for 2015 and 2016, background NGI topographical map

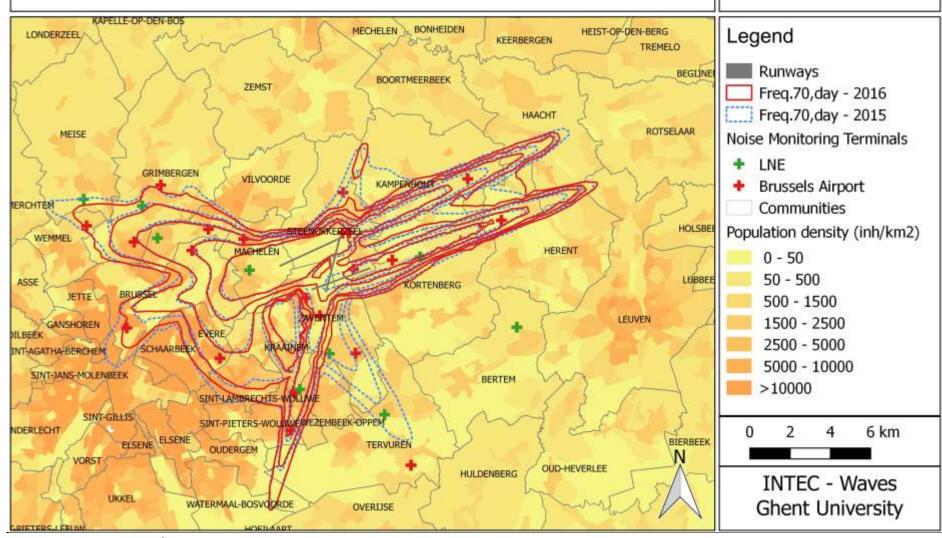


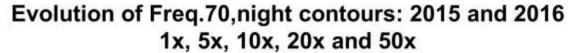



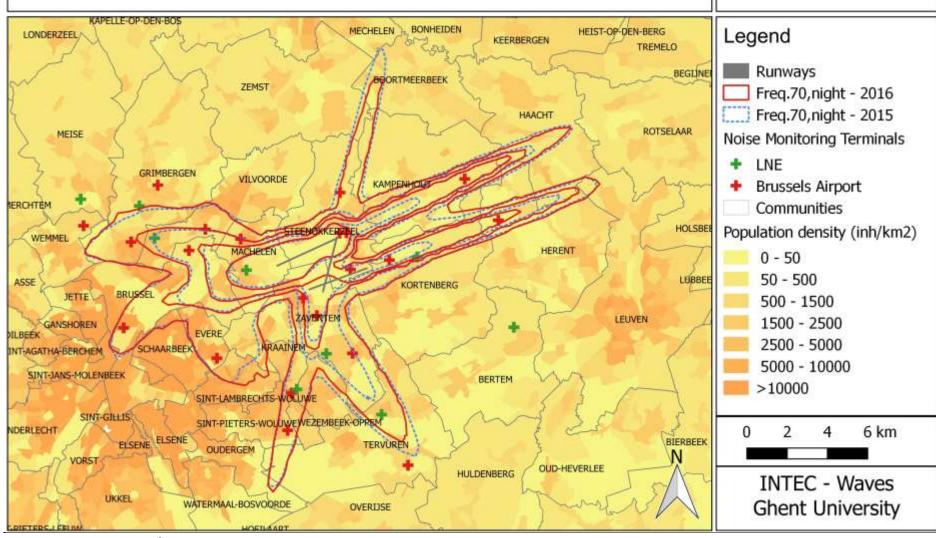




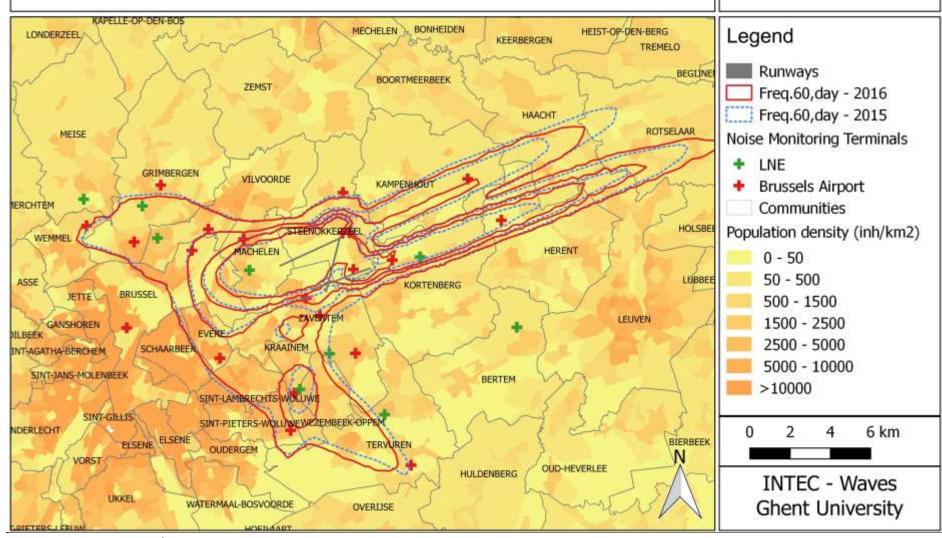



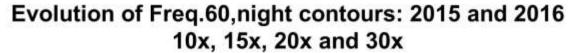




### Evolution of Freq.70,day contours: 2015 and 2016 5x, 10x, 20x, 50x and 100x

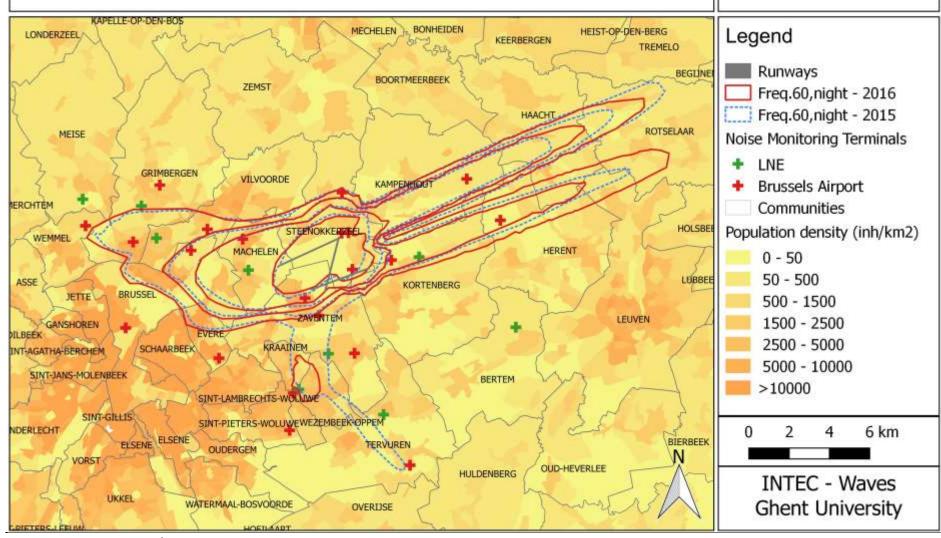
Frequency contours on population map (2011)





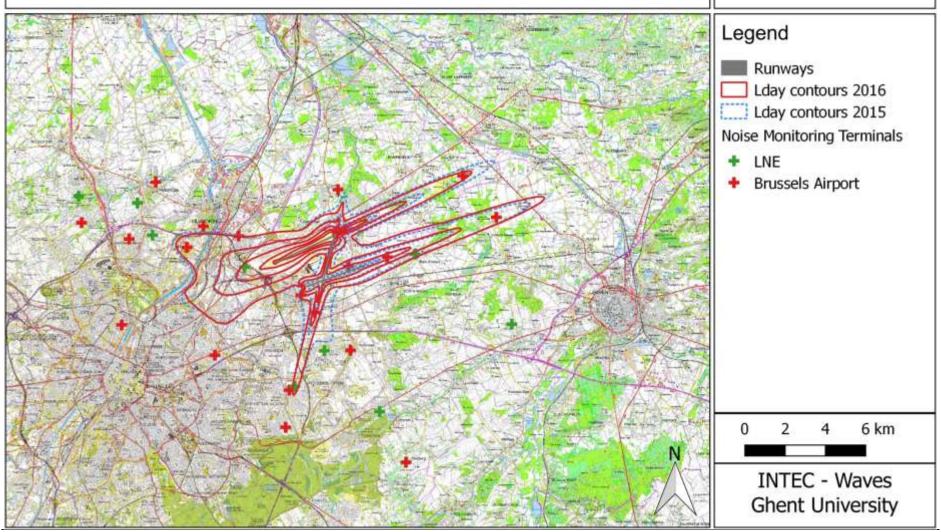


Frequency contours on population map (2011)




### Evolution of Freq.60,day contours: 2015 and 2016 50x, 100x, 150x and 200x

Frequency contours on population map (2011)

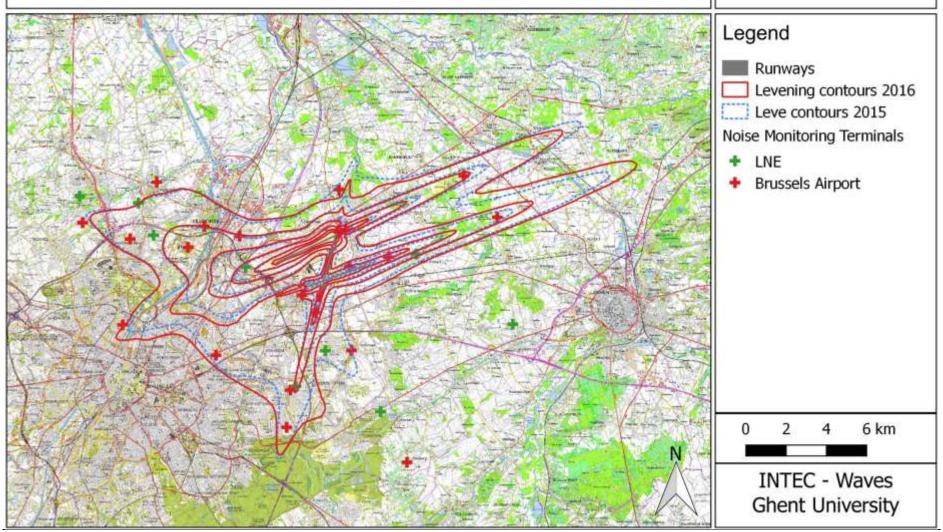





Frequency contours on population map (2011)



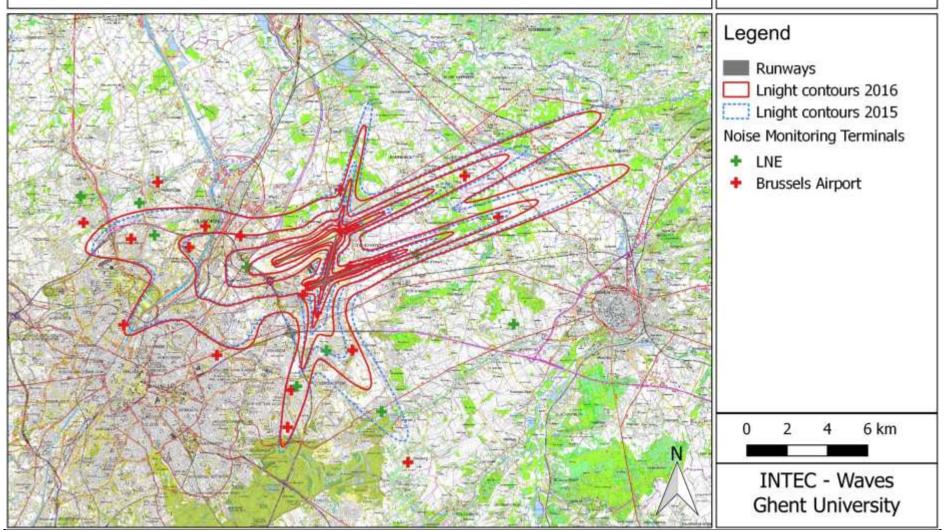
# Evolution of L<sub>day</sub> noise contours: 2015 and 2016 55, 60, 65, 70 and 75 dB(A) (07:00-19:00)


Noise contours on a topographic map (2011)



Ghent University - INTEC/WAVES

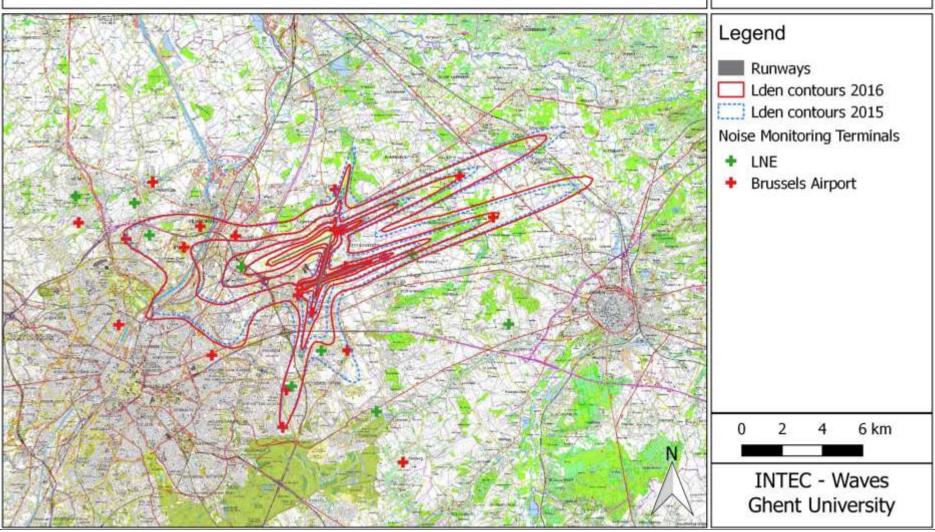
# Evolution of L<sub>evening</sub> noise contours: 2015 and 2016 50, 55, 60, 65, 70 and 75 dB(A) (19:00-23:00)


Noise contours on a topographic map (2011)



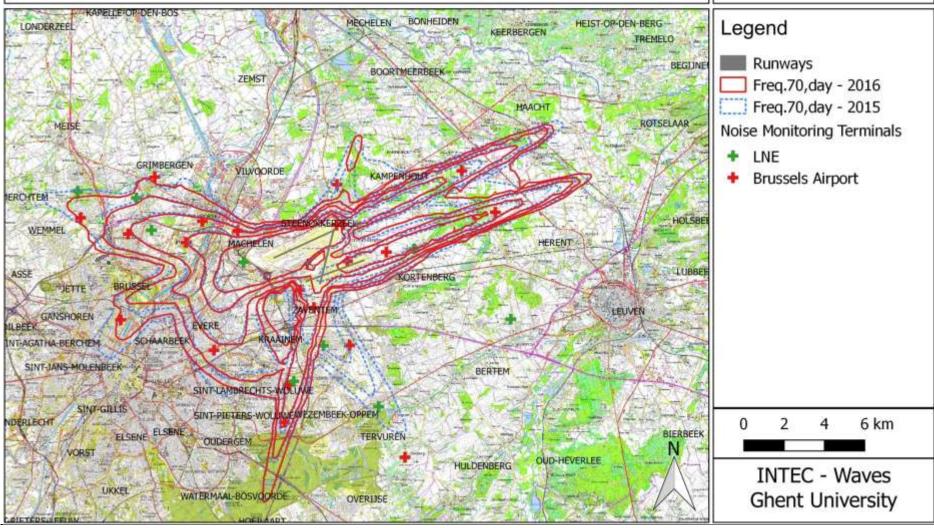
Ghent University - INTEC/WAVES

# Evolution of L<sub>night</sub> noise contours: 2015 and 2016 45, 50, 55, 60, 65 and 70 dB(A) (23:00-07:00)


Noise contours on a topographic map (2011)

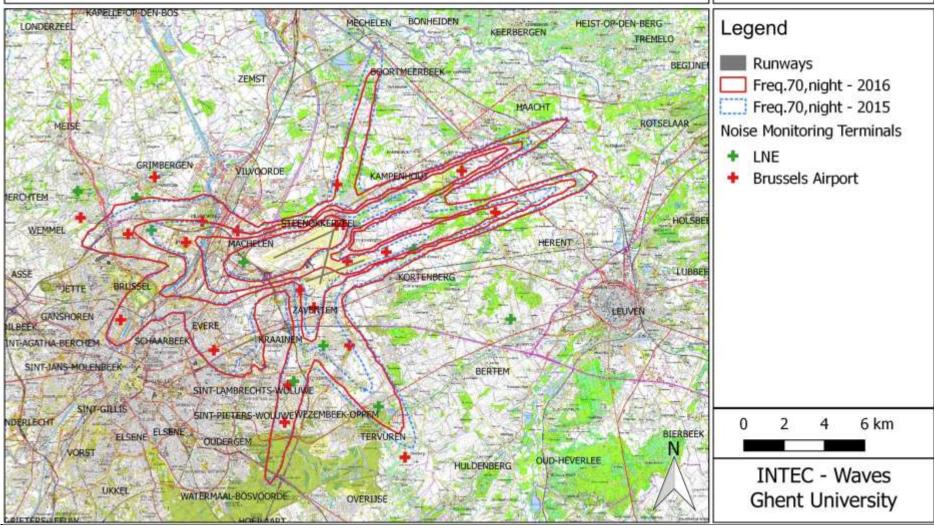


Ghent University - INTEC/WAVES


# Evolution of L<sub>den</sub> noise contours: 2015 and 2016 55, 60, 65, 70 and 75 dB(A)

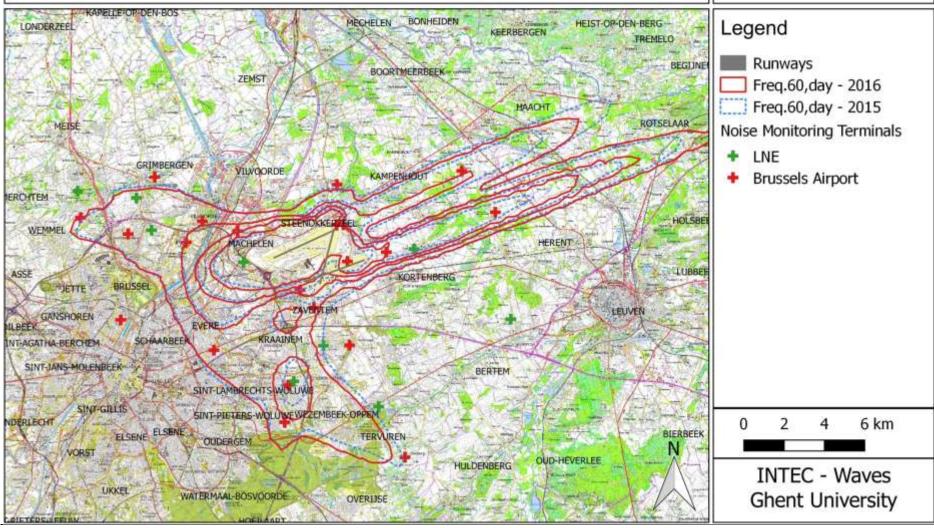
Noise contours on a topographic map (2011)




# Evolution of Freq.70,day contours: 2015 and 2016 5x, 10x, 20x, 50x and 100x

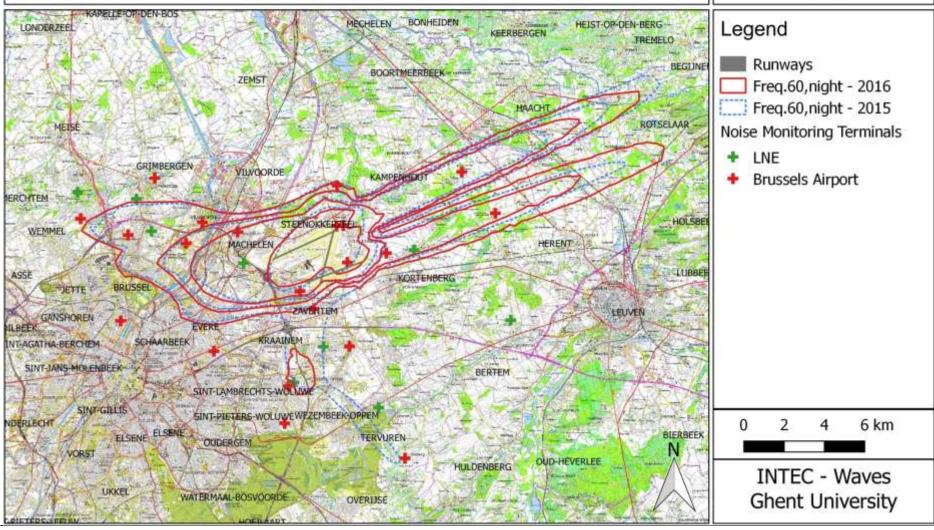
Frequency contours on topographique map (NGI)




## Evolution of Freq.70,night contours: 2015 and 2016 1x, 5x, 10x, 20x and 50x

Frequency contours on topographique map (NGI)




### Evolution of Freq.60,day contours: 2015 and 2016 50x, 100x, 150x and 200x

Frequency contours on topographique map (NGI)



### Evolution of Freq.60,night contours: 2015 and 2016 10x, 15x, 20x and 30x

Frequency contours on topographique map (NGI)



#### 5.5 Evolution of the surface area and the number of residents

### 5.5.1 Evolution of the surface area per contour zone: L<sub>day</sub>, L<sub>evening</sub>, L<sub>night</sub>, Freq.70,day, Freq.70,night, Freq.60,day and Freq.60,day.

Table 31: Evolution of the surface area inside the L<sub>day</sub> contours (2000, 2006-2016).

| Area (ha) | L <sub>day</sub> contour : | zone in dB(/ | A) (day 07.00 | 0-19.00)* |     |        |
|-----------|----------------------------|--------------|---------------|-----------|-----|--------|
| Year      | 55-60                      | 60-65        | 65-70         | 70-75     | >75 | Totaal |
| 2000      | 5,919                      | 2,113        | 827           | 383       | 242 | 9,485  |
| 2001      |                            |              |               |           |     |        |
| 2002      |                            |              |               |           |     |        |
| 2003      |                            |              |               |           |     |        |
| 2004      |                            |              |               |           |     |        |
| 2005      |                            |              |               |           |     |        |
| 2006      | 3,787                      | 1,379        | 545           | 213       | 150 | 6,073  |
| 2007      | 3,978                      | 1,431        | 575           | 227       | 153 | 6,364  |
| 2008      | 4,072                      | 1,492        | 596           | 232       | 161 | 6,553  |
| 2009      | 3,461                      | 1,300        | 523           | 206       | 133 | 5,622  |
| 2010      | 3,334                      | 1,261        | 514           | 196       | 126 | 5,431  |
| 2011      | 3,330                      | 1,241        | 509           | 199       | 127 | 5,406  |
| 2012      | 2,978                      | 1,121        | 466           | 189       | 117 | 4,871  |
| 2013      | 2,779                      | 1,106        | 455           | 176       | 121 | 4,637  |
| 2014      | 2,924                      | 1,120        | 474           | 187       | 116 | 4,821  |
| 2015      | 3,143                      | 1,180        | 489           | 230       | 93  | 5,135  |
| 2016      | 2,886                      | 1,087        | 545           | 123       | 82  | 4,723  |

<sup>\*</sup> Calculated with INM 7.0b

Figure 17: Evolution of the surface area inside the  $L_{\text{day}}$  contours (2000, 2006-2016).

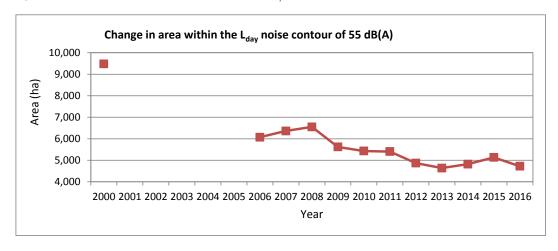



Table 32: Evolution of the surface area inside the  $L_{\text{evening}}$  contours (2000, 2006-2016).

| Area (ha) | L <sub>evening</sub> contour zone in dB(A) (evening 19.00-23.00)* |       |       |       |       |     |        |  |  |
|-----------|-------------------------------------------------------------------|-------|-------|-------|-------|-----|--------|--|--|
| Year      | 50-55                                                             | 55-60 | 60-65 | 65-70 | 70-75 | >75 | Total  |  |  |
| 2000      | 11,266                                                            | 5,265 | 1,889 | 741   | 346   | 216 | 19,723 |  |  |
| 2001      |                                                                   |       |       |       |       |     |        |  |  |
| 2002      |                                                                   |       |       |       |       |     |        |  |  |
| 2003      |                                                                   |       |       |       |       |     |        |  |  |
| 2004      |                                                                   |       |       |       |       |     |        |  |  |
| 2005      |                                                                   |       |       |       |       |     |        |  |  |
| 2006      | 8,483                                                             | 3,000 | 1,106 | 449   | 178   | 113 | 13,329 |  |  |
| 2007      | 9,106                                                             | 3,369 | 1,223 | 506   | 200   | 124 | 14,528 |  |  |
| 2008      | 10,052                                                            | 3,730 | 1,354 | 548   | 218   | 135 | 16,037 |  |  |
| 2009      | 8,313                                                             | 3,126 | 1,146 | 463   | 178   | 109 | 13,336 |  |  |
| 2010      | 7,821                                                             | 3,073 | 1,124 | 452   | 171   | 106 | 12,747 |  |  |
| 2011      | 7,711                                                             | 3,004 | 1,106 | 446   | 175   | 105 | 12,547 |  |  |
| 2012      | 7,608                                                             | 2,881 | 1,046 | 427   | 171   | 103 | 12,237 |  |  |
| 2013      | 6,998                                                             | 2,668 | 994   | 401   | 161   | 104 | 11,222 |  |  |
| 2014      | 7,421                                                             | 3,087 | 1,106 | 445   | 175   | 50  | 12,283 |  |  |
| 2015      | 8,244                                                             | 3,051 | 1,108 | 450   | 205   | 89  | 13,147 |  |  |
| 2016      | 8,402                                                             | 3,188 | 1,137 | 536   | 135   | 91  | 13,488 |  |  |

<sup>\*</sup> Calculated with INM 7.0b

Figure 18: Evolution of the surface area inside the  $L_{\text{evening}}$  contours (2000, 2006-2016).

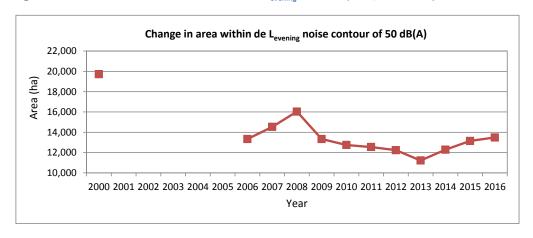



Table 33: Evolution of the surface area inside the  $L_{\text{night}}$  contours (2000, 2006-2016).

| Area (ha) | L <sub>night</sub> contour zone in dB(A) (night 23.00-07.00) |       |       |       |       |     |        |  |  |
|-----------|--------------------------------------------------------------|-------|-------|-------|-------|-----|--------|--|--|
| Year      | 45-50                                                        | 50-55 | 55-60 | 60-65 | 65-70 | >70 | Total  |  |  |
| 2000      | 13,927                                                       | 6,145 | 2,366 | 1,090 | 492   | 290 | 24,310 |  |  |
| 2001      |                                                              |       |       |       |       |     |        |  |  |
| 2002      |                                                              |       |       |       |       |     |        |  |  |
| 2003      |                                                              |       |       |       |       |     |        |  |  |
| 2004      |                                                              |       |       |       |       |     |        |  |  |
| 2005      |                                                              |       |       |       |       |     |        |  |  |
| 2006      | 10,135                                                       | 3,571 | 1,450 | 554   | 211   | 153 | 16,075 |  |  |
| 2007      | 10,872                                                       | 3,936 | 1,597 | 625   | 236   | 165 | 17,430 |  |  |
| 2008      | 9,375                                                        | 3,232 | 1,260 | 495   | 189   | 123 | 14,673 |  |  |
| 2009      | 7,638                                                        | 2,613 | 1,014 | 397   | 155   | 96  | 11,913 |  |  |
| 2010      | 7,562                                                        | 2,633 | 999   | 390   | 154   | 96  | 11,835 |  |  |
| 2011      | 8,184                                                        | 2,803 | 1,066 | 413   | 164   | 106 | 12,736 |  |  |
| 2012      | 8,525                                                        | 2,827 | 1,074 | 419   | 168   | 105 | 13,118 |  |  |
| 2013      | 7,817                                                        | 2,857 | 1,525 | 172   | 130   | 0   | 12,501 |  |  |
| 2014      | 7,800                                                        | 2,921 | 1,120 | 448   | 179   | 115 | 12,583 |  |  |
| 2015      | 8,451                                                        | 3,019 | 1,172 | 460   | 194   | 117 | 13,413 |  |  |
| 2016      | 7,969                                                        | 2,930 | 1,111 | 441   | 188   | 109 | 12,748 |  |  |

<sup>\*</sup> Calculated with INM 7.0b

Figure 19: Evolution of the surface area inside the  $L_{\text{night}}$  contours (2000, 2006-2016).

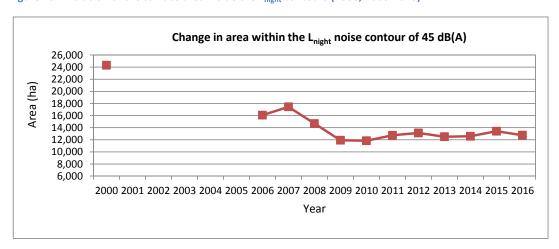



Table 34: Evolution of the surface area inside the  $L_{\text{den}}$  contours (2000, 2006-2016).

| Area (ha) | L <sub>den</sub> contour z | one in dB(A | ) (d. 07-19, e | ev. 19-23, n. 2 | 23-07)* |        |
|-----------|----------------------------|-------------|----------------|-----------------|---------|--------|
| Year      | 55-60                      | 60-65       | 65-70          | 70-75           | >75     | Total  |
| 2000      | 10,664                     | 4,063       | 1,626          | 745             | 497     | 17,594 |
| 2001      |                            |             |                |                 |         |        |
| 2002      |                            |             |                |                 |         |        |
| 2003      |                            |             |                |                 |         |        |
| 2004      |                            |             |                |                 |         |        |
| 2005      |                            |             |                |                 |         |        |
| 2006      | 6,963                      | 2,448       | 957            | 373             | 251     | 10,992 |
| 2007      | 7,632                      | 2,640       | 1,036          | 416             | 271     | 11,996 |
| 2008      | 7,118                      | 2,483       | 953            | 379             | 246     | 11,178 |
| 2009      | 5,771                      | 2,077       | 797            | 316             | 203     | 9,163  |
| 2010      | 5,576                      | 2,052       | 782            | 308             | 199     | 8,917  |
| 2011      | 5,767                      | 2,076       | 800            | 316             | 208     | 9,167  |
| 2012      | 5,623                      | 1,998       | 771            | 308             | 205     | 8,905  |
| 2013      | 5,152                      | 1,981       | 767            | 299             | 216     | 8,415  |
| 2014      | 5,429                      | 2,066       | 800            | 325             | 136     | 8,756  |
| 2015      | 5,695                      | 2,159       | 825            | 332             | 224     | 9,236  |
| 2016      | 5,554                      | 2,085       | 797            | 326             | 213     | 8,974  |

<sup>\*</sup> Calculated with INM 7.0b

Figure 20: Evolution of the surface area inside the  $L_{\text{den}}$  contours (2000, 2006-2016).

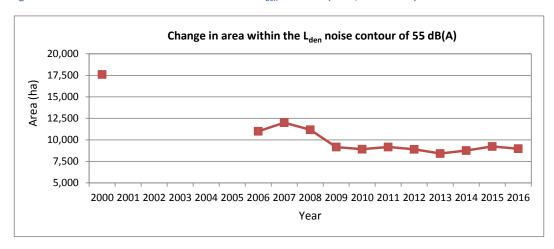



Table 35: Evolution of the surface area inside the Freq.70,day contours (2000, 2006-2016).

| Area (ha) | Freq.70,day contour zone (day 07.00-23.00)* |       |       |        |       |        |  |
|-----------|---------------------------------------------|-------|-------|--------|-------|--------|--|
| Year      | 5-10                                        | 10-20 | 20-50 | 50-100 | >100  | Total  |  |
| 2006      |                                             |       |       |        |       |        |  |
| 2007      |                                             |       |       |        |       |        |  |
| 2008      |                                             |       |       |        |       |        |  |
| 2009      |                                             |       |       |        |       |        |  |
| 2010      | 5,171                                       | 3,164 | 4,119 | 2,097  | 1,877 | 16,428 |  |
| 2011      | 4,933                                       | 2,989 | 4,216 | 1,934  | 1,854 | 15,926 |  |
| 2012      | 5,155                                       | 3,662 | 3,797 | 1,578  | 1,684 | 15,877 |  |
| 2013      | 4,660                                       | 3,915 | 3,154 | 1,879  | 1,503 | 15,557 |  |
| 2014      | 4,809                                       | 3,745 | 3,465 | 1,631  | 1,722 | 15,372 |  |
| 2015      | 6,650                                       | 4,431 | 3,442 | 1,903  | 1,887 | 18,314 |  |
| 2016      | 3,331                                       | 3,407 | 3,372 | 1,715  | 1,666 | 13,491 |  |

<sup>\*</sup> Calculated with INM 7.0b

Figure 21: Evolution of the surface area inside the Freq.70,day contours (2000, 2006-2016).

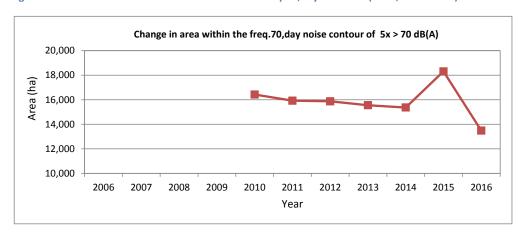



Table 36: Evolution of the surface area inside the Freq.70, night contours (2000, 2006-2015).

| Area (ha) | Freq.70,night contour zone (night 23.00-07.00)* |       |       |       |     |        |  |
|-----------|-------------------------------------------------|-------|-------|-------|-----|--------|--|
| Year      | 1-5                                             | 5-10  | 10-20 | 20-50 | >50 | Total  |  |
| 2006      |                                                 |       |       |       |     |        |  |
| 2007      |                                                 |       |       |       |     |        |  |
| 2008      |                                                 |       |       |       |     |        |  |
| 2009      |                                                 |       |       |       |     |        |  |
| 2010      | 9,535                                           | 2,679 | 1,948 | 748   | 0   | 14,910 |  |
| 2011      | 9,557                                           | 2,662 | 2,095 | 801   | 0   | 15,115 |  |
| 2012      | 9,226                                           | 2,846 | 2,005 | 861   | 0   | 14,938 |  |
| 2013      | 9,083                                           | 2,821 | 2,223 | 723   | 0   | 14,944 |  |
| 2014      | 8,169                                           | 2,586 | 2,030 | 1,001 | 27  | 13,813 |  |
| 2015      | 7,949                                           | 2,928 | 1,876 | 1,133 | 0   | 13,885 |  |
| 2016      | 8,104                                           | 2,439 | 2,149 | 998   | 0   | 13,690 |  |

<sup>\*</sup> Calculated with INM 7.0b

Figure 22: Evolution of the surface area inside the Freq.70, night contours (2000, 2006-2016).

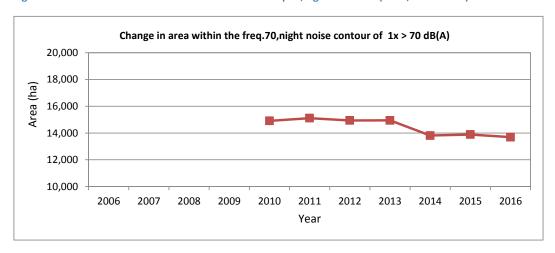



Table 37: Evolution of the surface area inside the Freq.60,day contours (2000, 2006-2015).

| Area (ha) | Freq.60,day con |         |         |       |        |
|-----------|-----------------|---------|---------|-------|--------|
| Year      | 50-100          | 100-150 | 150-200 | >200  | Total  |
| 2006      |                 |         |         |       |        |
| 2007      |                 |         |         |       |        |
| 2008      |                 |         |         |       |        |
| 2009      |                 |         |         |       |        |
| 2010      | 9,288           | 3,313   | 1,681   | 2,409 | 16,692 |
| 2011      | 9,112           | 3,405   | 1,476   | 2,579 | 16,572 |
| 2012      | 9,007           | 2,691   | 1,754   | 1,885 | 15,337 |
| 2013      | 8,005           | 1,958   | 2,053   | 972   | 13,632 |
| 2014      | 9,329           | 2,112   | 1,865   | 2,050 | 15,357 |
| 2015      | 9,211           | 3,511   | 1,633   | 1,848 | 16,203 |
| 2016      | 9,256           | 2,670   | 1,918   | 1,916 | 15,760 |

<sup>\*</sup> Calculated with INM 7.0b

Figure 23: Evolution of the surface area inside the Freq.60,day contours (2000, 2006-2016).

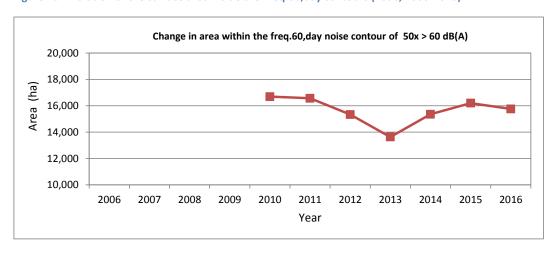
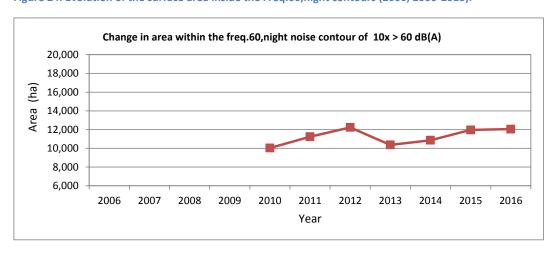




Table 38: Evolution of the surface area inside the Freq.60, night contours (2000, 2006-2016).

| Area (ha) | Freq.60,night cor |             |       |       |        |
|-----------|-------------------|-------------|-------|-------|--------|
| Year      | 10-15             | 15-20 20-30 |       | >30   | Total  |
| 2006      |                   |             |       |       |        |
| 2007      |                   |             |       |       |        |
| 2008      |                   |             |       |       |        |
| 2009      |                   |             |       |       |        |
| 2010      | 5,577             | 1,797       | 1,930 | 725   | 10,030 |
| 2011      | 6,436             | 1,972       | 1,930 | 905   | 11,242 |
| 2012      | 7,522             | 1,778       | 1,932 | 1,004 | 12,236 |
| 2013      | 5,083             | 2,367       | 1,888 | 1,031 | 10,369 |
| 2014      | 4,807             | 2,542       | 1,845 | 1,670 | 10,864 |
| 2015      | 5,819             | 1,786       | 3,064 | 1,295 | 11,964 |
| 2016      | 5,142             | 3,635       | 2,053 | 1,222 | 12,052 |

<sup>\*</sup> Calculated with INM 7.0b

Figure 24: Evolution of the surface area inside the Freq.60, night contours (2000, 2006-2016).



# 5.5.2 Evolution of the number of residents per contour zone: $L_{\text{day}}$ , $L_{\text{evening}}$ , $L_{\text{night}}$ , Freq.70,day, Freq.70,night, Freq.60,day and Freq.60,night.

Table 39: Evolution of the number of residents inside the  $L_{\text{day}}$  contours (2000, 2006-2016).

| Number o | of inhabitants  | L <sub>dav</sub> contour | zone in dB(/ | A) (day 07.00 | 0-19.00)* |     |         |
|----------|-----------------|--------------------------|--------------|---------------|-----------|-----|---------|
| Year     | Population data | 55-60                    | 60-65        | 65-70         | 70-75     | >75 | Total   |
| 2000     | 01jan00         | 106,519                  | 13,715       | 5,660         | 1,134     | 20  | 127,048 |
| 2001     |                 |                          |              |               |           |     |         |
| 2002     |                 |                          |              |               |           |     |         |
| 2003     |                 |                          |              |               |           |     |         |
| 2004     |                 |                          |              |               |           |     |         |
| 2005     |                 |                          |              |               |           |     |         |
| 2006     | 01jan03         | 39,478                   | 9,241        | 2,714         | 74        | 3   | 51,511  |
| 2007     | 01jan06         | 47,260                   | 9,966        | 3,168         | 102       | 3   | 60,499  |
| 2008     | 01jan07         | 44,013                   | 10,239       | 3,217         | 101       | 4   | 57,575  |
| 2009     | 01jan07         | 32,144                   | 8,724        | 2,815         | 58        | 3   | 43,745  |
| 2010     | 01jan08         | 30,673                   | 8,216        | 2,393         | 35        | 7   | 41,323  |
| 2011     | 01jan08         | 28,828                   | 8,486        | 2,460         | 46        | 7   | 39,828  |
| 2012     | 01jan10         | 23,963                   | 8,277        | 2,110         | 22        | 2   | 34,375  |
| 2013     | 01jan10         | 22,737                   | 7,482        | 1,318         | 7         | 2   | 31,546  |
| 2014     | 01jan11         | 22,998                   | 8,649        | 2,249         | 22        | 2   | 33,920  |
| 2015     | 01jan11         | 23,662                   | 8,945        | 2,350         | 99        | 0   | 35,056  |
| 2016     | 01jan11         | 20,554                   | 8,380        | 2,094         | 28        | 0   | 31,057  |

<sup>\*</sup> Calculated with INM 7.0b

Figure 25: Evolution of the number of residents inside the  $L_{day}$  contours (2000, 2006-2016).

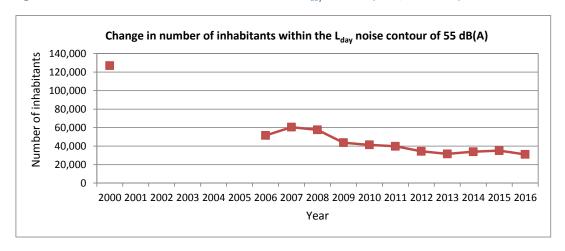



Table 40: Evolution of the number of residents inside the  $L_{\text{evening}}$  contours (2000, 2006-2016).

| Number o | of inhabitants  | L <sub>evening</sub> con | tour zone | in dB(A) (e | vening 19 | .00-23.00)* |     |         |
|----------|-----------------|--------------------------|-----------|-------------|-----------|-------------|-----|---------|
| Year     | Population data | 50-55                    | 55-60     | 60-65       | 65-70     | 70-75       | >75 | Total   |
| 2000     | 01jan00         | 209,265                  | 86,637    | 13,246      | 4,990     | 602         | 9   | 314,750 |
| 2001     |                 |                          |           |             |           |             |     |         |
| 2002     |                 |                          |           |             |           |             |     |         |
| 2003     |                 |                          |           |             |           |             |     |         |
| 2004     |                 |                          |           |             |           |             |     |         |
| 2005     |                 |                          |           |             |           |             |     |         |
| 2006     | 01jan03         | 185,699                  | 24,488    | 7,138       | 2,030     | 28          | 3   | 219,386 |
| 2007     | 01jan06         | 214,616                  | 35,445    | 8,217       | 2,583     | 38          | 2   | 260,901 |
| 2008     | 01jan07         | 249,024                  | 43,589    | 9,514       | 2,969     | 52          | 3   | 305,152 |
| 2009     | 01jan07         | 198,351                  | 29,774    | 7,448       | 2,186     | 32          | 2   | 237,793 |
| 2010     | 01jan08         | 198,934                  | 37,729    | 7,127       | 2,057     | 25          | 5   | 245,878 |
| 2011     | 01jan08         | 198,540                  | 41,951    | 7,110       | 2,077     | 32          | 5   | 249,716 |
| 2012     | 01jan10         | 213,799                  | 46,427    | 7,309       | 2,072     | 27          | 1   | 269,635 |
| 2013     | 01jan10         | 148,866                  | 25,888    | 6,432       | 1,054     | 7           | 1   | 182,247 |
| 2014     | 01jan11         | 187,698                  | 23,913    | 9,632       | 2,052     | 29          | 0   | 223,324 |
| 2015     | 01jan11         | 168,549                  | 22,593    | 8,790       | 2,424     | 88          | 0   | 202,444 |
| 2016     | 01jan11         | 204,319                  | 29,643    | 9,140       | 2,796     | 52          | 0   | 245,949 |

<sup>\*</sup> Calculated with INM 7.0b

Figure 26: Evolution of the number of residents inside the  $L_{\text{evening}}$  contours (2000, 2006-2016).

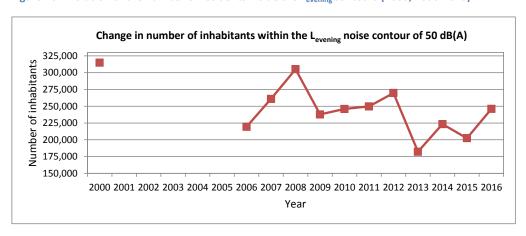



Table 41: Evolution of the number of residents inside the  $L_{\text{night}}$  contours (2000, 2006-2016).

| Number o | f inhabitants   | L <sub>night</sub> conto | ur zone in | dB(A) (nig | ht 23.00-0 | 7.00) |     |         |
|----------|-----------------|--------------------------|------------|------------|------------|-------|-----|---------|
| Year     | Population data | <sup>3</sup> 45-50       | 50-55      | 55-60      | 60-65      | 65-70 | >70 | Total   |
| 2000     | 01jan00         | 139,440                  | 57,165     | 18,384     | 8,394      | 1,325 | 72  | 224,779 |
| 2001     |                 |                          |            |            |            |       |     |         |
| 2002     |                 |                          |            |            |            |       |     |         |
| 2003     |                 |                          |            |            |            |       |     |         |
| 2004     |                 |                          |            |            |            |       |     |         |
| 2005     |                 |                          |            |            |            |       |     |         |
| 2006     | 01jan03         | 167,033                  | 28,985     | 8,836      | 1,167      | 174   | 8   | 206,202 |
| 2007     | 01jan06         | 199,302                  | 32,473     | 11,607     | 2,185      | 181   | 26  | 245,772 |
| 2008     | 01jan07         | 151,736                  | 26,450     | 7,985      | 1,017      | 133   | 3   | 187,323 |
| 2009     | 01jan07         | 122,871                  | 19,528     | 6,303      | 622        | 92    | 2   | 149,418 |
| 2010     | 01jan08         | 129,820                  | 19,986     | 6,077      | 571        | 89    | 5   | 156,548 |
| 2011     | 01jan08         | 129,969                  | 22,490     | 6,414      | 622        | 94    | 5   | 159,594 |
| 2012     | 01jan10         | 124,012                  | 24,015     | 6,963      | 585        | 78    | 2   | 155,655 |
| 2013     | 01jan10         | 91,140                   | 28,407     | 7,152      | 51         | 3     | 0   | 126,754 |
| 2014     | 01jan11         | 163,270                  | 24,221     | 7,889      | 869        | 110   | 3   | 196,362 |
| 2015     | 01jan11         | 125,407                  | 26,956     | 8,239      | 762        | 159   | 2   | 161,524 |
| 2016     | 01jan11         | 128,939                  | 23,476     | 7,954      | 715        | 131   | 0   | 161,216 |

<sup>\*</sup> Calculated with INM 7.0b

Figure 27: Evolution of the number of residents inside the L<sub>night</sub> contours (2000, 2006-2016).

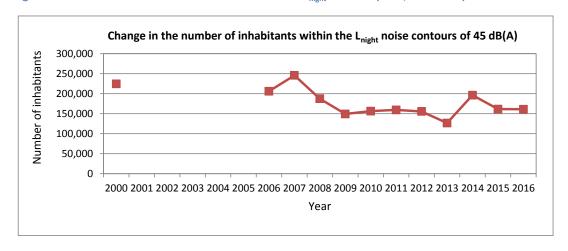



Table 42: Evolution of the number of residents inside the  $L_{\text{den}}$  contours (2000, 2006-2016).

| Number of | inhabitants     | L <sub>den</sub> contour a | zone in dB(A | A) (d. 07-19, e | ev. 19-23, n. : | 23-07)* |         |
|-----------|-----------------|----------------------------|--------------|-----------------|-----------------|---------|---------|
| Year      | Population data | 55-60                      | 60-65        | 65-70           | 70-75           | >75     | Total   |
| 2000      | 01jan00         | 166,767                    | 36,797       | 14,091          | 3,952           | 264     | 221,871 |
| 2001      |                 |                            |              |                 |                 |         |         |
| 2002      |                 |                            |              |                 |                 |         |         |
| 2003      |                 |                            |              |                 |                 |         |         |
| 2004      |                 |                            |              |                 |                 |         |         |
| 2005      |                 |                            |              |                 |                 |         |         |
| 2006      | 01jan03         | 107,514                    | 18,697       | 5,365           | 560             | 63      | 132,198 |
| 2007      | 01jan06         | 147,349                    | 19,498       | 6,565           | 946             | 82      | 174,442 |
| 2008      | 01jan07         | 125,927                    | 19,319       | 5,938           | 717             | 24      | 151,925 |
| 2009      | 01jan07         | 87,766                     | 15,105       | 4,921           | 404             | 9       | 108,205 |
| 2010      | 01jan08         | 87,083                     | 15,619       | 4,506           | 337             | 11      | 107,556 |
| 2011      | 01jan08         | 90,988                     | 15,941       | 4,664           | 362             | 13      | 111,969 |
| 2012      | 01jan10         | 86,519                     | 16,220       | 4,617           | 319             | 6       | 107,680 |
| 2013      | 01jan10         | 56,516                     | 16,517       | 3,994           | 197             | 5       | 77,229  |
| 2014      | 01jan10         | 84,747                     | 16,525       | 5,076           | 368             | 9       | 106,725 |
| 2015      | 01jan11         | 72,628                     | 17,721       | 5,244           | 428             | 55      | 96,075  |
| 2016      | 01jan11         | 77,229                     | 16,694       | 5,284           | 450             | 23      | 99,680  |

<sup>\*</sup> Calculated with INM 7.0b

Figure 28: Evolution of the number of residents inside the  $L_{den}$  contours (2000, 2006-2016).

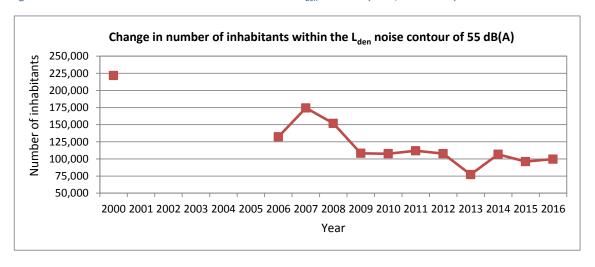



Table 43: Evolution of the number of residents inside the Freq.70,day contours (2000, 2006-2016).

| Number o | Number of inhabitants |         | Freq.70,day contour zone (day 07.00-23.00)* |        |        |        |         |
|----------|-----------------------|---------|---------------------------------------------|--------|--------|--------|---------|
| Year     | Population data       | 5-10    | 10-20                                       | 20-50  | 50-100 | >100   | Total   |
| 2006     |                       |         |                                             |        |        |        |         |
| 2007     |                       |         |                                             |        |        |        |         |
| 2008     |                       |         |                                             |        |        |        |         |
| 2009     |                       |         |                                             |        |        |        |         |
| 2010     | 01jan08               | 133,468 | 77,606                                      | 82,703 | 15,348 | 9,874  | 318,999 |
| 2011     | 01jan08               | 133,014 | 80,395                                      | 78,893 | 11,783 | 10,018 | 314,103 |
| 2012     | 01jan10               | 128,971 | 95,435                                      | 58,279 | 10,112 | 9,339  | 302,136 |
| 2013     | 01jan10               | 94,888  | 84,745                                      | 33,045 | 14,225 | 6,554  | 239,376 |
| 2014     | 01jan11               | 226,319 | 139,618                                     | 47,774 | 10,655 | 10,379 | 434,746 |
| 2015     | 01jan11               | 163,105 | 104,564                                     | 43,843 | 11,547 | 11,204 | 334,264 |
| 2016     | 01jan11               | 95,084  | 86,813                                      | 40,288 | 10,509 | 10,541 | 243,235 |

<sup>\*</sup> Calculated with INM 7.0b

Figure 29: Evolution of the number of residents inside the Freq.70,day contours (2000, 2006-2016).

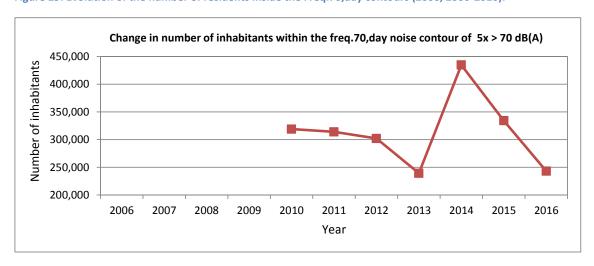



Table 44: Evolution of the number of residents inside the Freq.70, night contours (2000, 2006-2016).

| Number o | of inhabitants  | Freq.70,night contour zone (night 23.00-07.00)* |        |        |       |     |         |
|----------|-----------------|-------------------------------------------------|--------|--------|-------|-----|---------|
| Year     | Population data | 1-5                                             | 5-10   | 10-20  | 20-50 | >50 | Total   |
| 2006     |                 |                                                 |        |        |       |     |         |
| 2007     |                 |                                                 |        |        |       |     |         |
| 2008     |                 |                                                 |        |        |       |     |         |
| 2009     |                 |                                                 |        |        |       |     |         |
| 2010     | 01jan08         | 239,529                                         | 23,583 | 12,968 | 2,597 | 0   | 278,677 |
| 2011     | 01jan08         | 232,090                                         | 22,587 | 13,071 | 3,261 | 0   | 271,010 |
| 2012     | 01jan10         | 195,400                                         | 21,774 | 12,858 | 4,078 | 0   | 234,110 |
| 2013     | 01jan10         | 158,701                                         | 22,985 | 15,876 | 1,774 | 0   | 199,913 |
| 2014     | 01jan11         | 240,106                                         | 19,794 | 13,018 | 6,333 | 0   | 279,251 |
| 2015     | 01jan11         | 167,925                                         | 22,934 | 13,681 | 6,400 | 0   | 210,939 |
| 2016     | 01jan11         | 183,776                                         | 18,616 | 14,079 | 6,151 | 0   | 222,622 |

<sup>\*</sup> Calculated with INM 7.0b

Figure 30: Evolution of the number of residents inside the Freq.70,night contours (2000, 2006-2016).

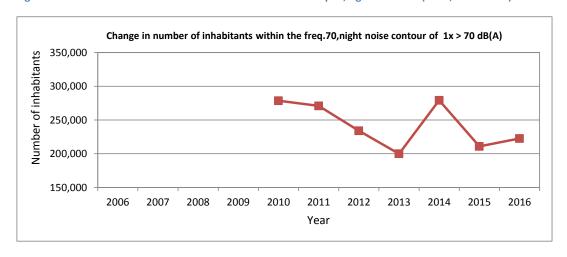



Table 45: Evolution of the number of residents inside the Freq.60,day contours (2000, 2006-2016).

| Number of | of inhabitants  | Freq.60,day con | tour zone (da | y 07.00-23.00)* |        |         |
|-----------|-----------------|-----------------|---------------|-----------------|--------|---------|
| Year      | Population data | 50-100          | 100-150       | 150-200         | >200   | Total   |
| 2006      |                 |                 |               |                 |        |         |
| 2007      |                 |                 |               |                 |        |         |
| 2008      |                 |                 |               |                 |        |         |
| 2009      |                 |                 |               |                 |        |         |
| 2010      | 01jan08         | 154,110         | 49,587        | 14,723          | 15,834 | 234,253 |
| 2011      | 01jan08         | 152,727         | 50,646        | 8,604           | 18,816 | 230,793 |
| 2012      | 01jan10         | 158,634         | 35,632        | 10,547          | 15,498 | 220,312 |
| 2013      | 01jan10         | 123,956         | 12,877        | 18,257          | 3,603  | 174,921 |
| 2014      | 01jan11         | 273,603         | 22,036        | 10,282          | 17,121 | 323,042 |
| 2015      | 01jan11         | 191,263         | 23,810        | 12,105          | 16,596 | 243,774 |
| 2016      | 01jan11         | 179,841         | 31,127        | 10,476          | 17,495 | 238,939 |

<sup>\*</sup> Calculated with INM 7.0b

Figure 31: Evolution of the number of residents inside the Freq.60,day contours (2000, 2006-2016).

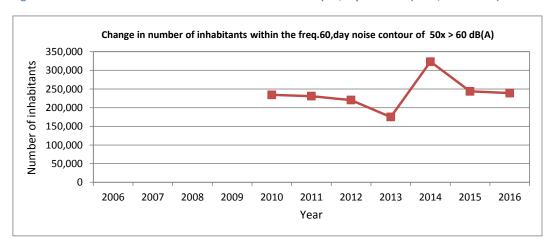
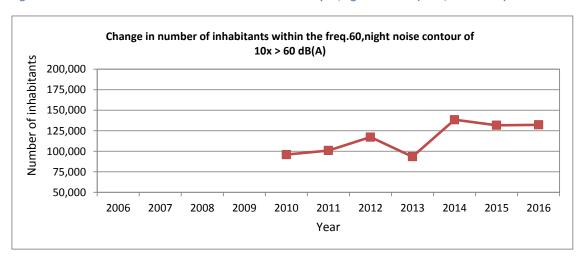




Table 46: Evolution of the number of residents inside the Freq.60, night contours (2000, 2006-2016).

| Number of inhabitants |                 | Freq.60,night contour zone in dB(A)* |        |        |        |         |
|-----------------------|-----------------|--------------------------------------|--------|--------|--------|---------|
| Year                  | Population data | 10-15                                | 15-20  | 20-30  | >30    | Total   |
| 2006                  |                 |                                      |        |        |        |         |
| 2007                  |                 |                                      |        |        |        |         |
| 2008                  |                 |                                      |        |        |        |         |
| 2009                  |                 |                                      |        |        |        |         |
| 2010                  | 01jan08         | 62,090                               | 9,411  | 21,231 | 3,262  | 95,994  |
| 2011                  | 01jan08         | 65,246                               | 9,522  | 20,695 | 5,450  | 100,913 |
| 2012                  | 01jan10         | 80,911                               | 8,723  | 20,642 | 7,009  | 117,284 |
| 2013                  | 01jan10         | 52,151                               | 14,679 | 20,269 | 6,340  | 93,438  |
| 2014                  | 01jan11         | 79,725                               | 27,741 | 18,637 | 12,317 | 138,420 |
| 2015                  | 01jan11         | 84,429                               | 12,453 | 24,502 | 10,351 | 131,736 |
| 2016                  | 01jan11         | 81,235                               | 20,356 | 21,869 | 8,779  | 132,238 |

<sup>\*</sup> Calculated with INM 7.0b

Figure 32: Evolution of the number of residents inside the Freq.60, night contours (2000, 2006-2016).



## 5.6 Documentation provided files

#### Radar data for the year 2016 (source: BAC-ANOMS)

| radar 2016.zip | 10/01/2017 | 627,962 kB |  |
|----------------|------------|------------|--|

#### Flight data for the year 2016 (source: BAC-CDB)

| cdb 2016 01 12.txt | 09/01/2016 | 60,851 kB  |
|--------------------|------------|------------|
| 00.000             | 00/02/2020 | 00,002 112 |

#### Weather data for the year 2016 (source: BAC-ANOMS)

| 2016_meteo.xlsx | 03/02/2016 | 1,717 kB |
|-----------------|------------|----------|
|-----------------|------------|----------|

### Noise events for the year 2016 (source: BAC-ANOMS)

| 2016-01_events.xlsx        | 27/02/2017 09:29    | 8340 KB  |
|----------------------------|---------------------|----------|
| 2016-02_events.xlsx        | 27/02/2017 9:47 AM  | 8663 KB  |
| 2016-03_events.xlsx        | 27/02/2017 9:50 AM  | 6990 KB  |
| 2016-04_events.xlsx        | 27/02/2017 9:59 AM  | 5996 KB  |
| 2016-05_events.xlsx        | 27/02/2017 10:03 AM | 7985 KB  |
| 2016-06_events.xlsx        | 27/02/2017 10:34 AM | 8450 KB  |
| 2016-07_events.xlsx        | 27/02/2017 10:37 AM | 8945 KB  |
| 2016-08_events.xlsx        | 27/02/2017 10:40 AM | 10821 KB |
| 2016-09_events.xlsx        | 27/02/2017 10:44 AM | 11025 KB |
| 2016-10_events.xlsx        | 27/02/2017 10:48 AM | 9755 KB  |
| 2016-11_events_update.xlsx | 28/03/2017 12:21 PM | 10121 KB |
| 2016-12_events.xlsx        | 27/02/2017 2:32 PM  | 8586 KB  |
|                            |                     |          |

#### 1 h reports noise measuring network for the year 2016 (source: BAC-ANOMS / LNE)

| uur-rapporten_2016-01_03.xlsx | 27/02/2017 3:15 PM | 4508 KB |
|-------------------------------|--------------------|---------|
| uur-rapporten_2016-04_06.xlsx | 27/02/2017 15:15   | 4408 KB |
| uur-rapporten_2016-07_09.xlsx | 27/02/2017 15:15   | 4670 KB |
| uur-rapporten_2016-10_12.xlsx | 27/02/2017 3:15 PM | 4664 KB |
| status_LNE_2016.xls           | 27/02/2017 3:18 PM | 1912 KB |

#### 24 h reports noise measuring network for the year 2015 (source: BAC-ANOMS)

| 24h-rapporten-2016.xlsx | Tuesday | 27/02/2017 | 443 KB |
|-------------------------|---------|------------|--------|
|                         | 3:12 PM |            |        |